• Title/Summary/Keyword: 에너지 절약요소

Search Result 111, Processing Time 0.024 seconds

Asterisk(*) Array structure based power reduction power distribution board (애스터리스크(*) 배열구조 기반 전력저감 수배전반)

  • Kim, Mi-Suk;Park, Dong-Sam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.11
    • /
    • pp.138-144
    • /
    • 2017
  • With the increase in power consumption due to the surge in the demand for power, it is necessary to improve the quality or design of the power (supply) for the purpose of reducing the energy consumption and so reduce the power loss. The switchboard is a mechanical device that receives electricity from the electricity generation facilities of KEPCO and divides it into the facilities required for each building. Switchboards generally consist of enclosures, switches, power conductors, and control components. This study deals with energized power conductors, which constitute the main element in the switchboard. Through the measurement of the effective ac resistance, it was confirmed that the vertical array structure of the conventional type plate conductor is inefficient. If the effective AC resistance increases significantly, the sectional area of the conductor becomes relatively large due to the skin effect. In this study, we studied the energy and material savings that could be obtained using the asterisk (*) array structure, which minimizes the effective ac resistance by reducing the skin effect. The core technology principle of this study is the energy saving switchgear based on conductor resistance reduction technology utilizing the asterisk array structure. The present invention involves a plate-shaped conductor arrangement structure capable of canceling out the magnetic field generated on each of the plate conductors (rst or abc) of the AC power supply in the power distribution panel by mutual action. The effect of this structure is to reduce the amount of inductive reactance due to the increase in the cross-sectional area and reduction of the effective AC resistance.

Performance Comparison of Modulation Schemes according to the Dimming Control in MIMO-VLC System (MIMO-VLC에서 디밍제어에 따른 변조방식들의 성능 비교)

  • Lee, Min-Jung;Lee, Byung-Jin;Ju, Sang-Lim;Kim, Yong-Won;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.63-69
    • /
    • 2014
  • Visible light communication is a communication method using an LED's blinking(ON/OFF), it has a feature of light because of the limit of perception by the human's optic nerve. LED' dimming control used in the VLC system is important factor needed to provide energy saving and life benefits. With advances in VLC system, MIMO technology has received much attention in that it can be obtain channel capacity proportionate to the number of antenna. Therefore, in this paper, with RC method which is one of the MIMO style in VLC system, it is compared communication performance using RZ-OOK, VPPM, MPPM and OPPM. As a result of the simulation was run against this, MPPM works well in terms of Power requirement and OPPM works well in terms of Spectral efficiency and Bandwidth requirement, also it was confirmed that there is a significant impact on the communication performance of each modulation scheme according to the dimming.

Development of Bicycle Level of Service Model from the User's Perspective Using Ordered Probit Model (순서형 프로빗 모형을 이용한 이용자 중심의 자전거 서비스 수준 모형 개발)

  • Lee, Gyeo-Ra;Rho, Jong-Ki;Kang, Kyung-Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.108-117
    • /
    • 2009
  • The South Korean government is looking for a solution to the ever-growing problems of traffic congestion, and surging international oil prices: the use of the humble bicycle to get to places. However, Many people feel inconvenient using bicycle because of the insufficient bicycle infrastructure and lack of the safety and connectivity between existing pathways. In this study, bicycle level of service model using ordered probit model is developed considering safety, convenience, connectivity, and factors that affect bicycle LOS. The ordered probit model would be recommended for the research which relates in choice, preference and strength etc. Bicycle level of service criteria is calculated by applying this model reflecting bicyclist's point of view. The model which develops from this research which accomplishes a bicycle level of service evaluation and represent alternative solution to encourage bicyclist. It is believed that the proposed model would be greatly utilized in bicycle network planning, bicycle road and facility alternatives testing, projects funding priority.

  • PDF

A Study for the Screen Door Motor System Driving Stiffness of Dynamic Load Condition (스크린 도어 모터 시스템의 동하중 상태 구동강성 검증)

  • Lee, Jung-Hyun;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.164-170
    • /
    • 2016
  • The initial urban railway was only required to perform its role as means of transportation. As the time of staying in an underground platform was extended, it has been faced with the issues of environmental improvement as a living space. Therefore, the sliding automatic door, which is the basis of the screen door, is used widely for large distribution stores, hospitals, restaurants, and public offices for customers' convenience and as a convenient method to control access. Therefore, screen doors are required for the purpose of customers' convenience, securing safety, establishing pleasant station buildings, and energy savings. It would be also necessary to develop the optimal design technology for a screen door system through the design of element parts and to ensure reliability. Therefore, this paper calculated, interpreted, and verified the theoretical weight of the composition parts to verify the design drive hardness of the motor for screen doors necessary for the safety of subways.

Design of a SUN RF Transceiver for IEEE 802.15.4g (IEEE 802.15.4g용 SUN RF 송수신 시스템 설계에 대한 연구)

  • Kim, Jae-Young;Lee, Seung-Sik;Seo, Yong-Ho;Kim, Chang-Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1877-1882
    • /
    • 2013
  • Smart Utility Network (SUN) is not only a core technology of intelligent green home networks but also a future technology which can be applicable to various areas instead of ZigBee. SUN should be compliment with IEEE 802.15.4g standard and can provide high link margin and stable communication data-rate for poor communication surrounding. This paper describes how to design the system simulation environment for the SUN RF transceiver, and also reports the required block-level specification for each circuit and various implementation impairments. Finally, the measured performances of the fabricated RF transceiver, which has utilized the system simulation results, completely satisfies the IEEE 802.15.4g SUN PHY standard.

Correlation Between Meteorological Factors and Hospital Power Consumption (기상요인과 병원 전력사용량의 상관관계)

  • Kim, Jang-Mook;Cho, Jung-Hwan;Kim, Byul
    • Journal of Digital Convergence
    • /
    • v.14 no.6
    • /
    • pp.457-466
    • /
    • 2016
  • To achieve eco-friendly hospitals it is necessary to empirically verify the effect of meteorological factors on the power consumption of the hospital. Using daily meteorological big data from 2009 to 2013, we studied the weather conditions impact to power consumption and analyzed the patterns of power consumption of two hospitals. R analysis revealed that temperature among the meteorological factors had the greatest impact on the hospital power consumption, and was a significant factor regardless of hospital size. The pattern of hospital power consumption differed considerably depending on the hospital size. The larger hospital had a linear pattern of power consumption and the smaller hospital had a quadratic nonlinear pattern. A typical pattern of increasing power consumption during a hot summer and a cold winter was evident for both hospitals. The results of this study suggest that a hospital's functional specificity and meteorological factors should be considered to improve energy savings and eco-friendly building.

A Design of Hop-by-Hop based Reliable Congestion Control Protocol for WSNs (무선 센서 네트워크를 위한 Hop-by-Hop 기반의 신뢰성 있는 혼잡제어 기법 설계)

  • Heo Kwan;Kim Hyun-Tae;Ra In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.6
    • /
    • pp.1055-1059
    • /
    • 2006
  • In Wireless Sensor Networks(WSNs), a sensor node broadcasts the acquisited sensing data to neighboring other nodes and it makes serious data duplication problem that increases network traffic loads and data loss. This problem is concerned with the conflict condition for supporting both the reliability of data transfer and avoidance of network congestion. To solve the problem, a reliable congestion control protocol is necessary that considers critical factors affecting on data transfer reliability such as reliable data transmission, wireless loss, and congestion loss for supporting effective congestion control in WSNs. In his paper, we proposes a reliable congestion protocol, called HRCCP, based on hop-hop sequence number, and DSbACK by minimizing useless data transfers as an energy-saved congestion control method.

A Design of Hop-by-Hop based Reliable Congestion Control Protocol for WSNs (무선 센서 네트워크를 위한 Hop-by-Hop 기반의 신뢰성 있는 혼잡제어 기법 설계)

  • Heo Kwan;Kim Hyun-Tae;Yang Hae-Kwon;Ra In-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.442-445
    • /
    • 2006
  • In Wireless Sensor Networks(WSNs), a sensor node broadcasts an acquisited data to neighboring other nodes and it makes serious data duplication problem that increases network traffic loads and data loss. This problem is concerned with the conflict condition for supporting both the reliability of data transfer and avoidance of network congestion. To solve the problem, a reliable congestion control protocol is necessary that considers critical factors affecting on data transfer reliability such as reliable data transmission, wireless loss, and congestion loss for supporting effective congestion control in WSNs. In this paper, we proposes a reliable congestion protocol, ratted HRCCP, based on hop-hop sequence number, and DSbACK by minimizing useless data transfers as an energy-saved congestion control method.

  • PDF

Recycled Clothes and Its Characters Impact on Consumers' Consumption (재활용 의류와 그 특성이 소비자의 소비에 미치는 영향)

  • He, Luyao;Pan, Young Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.7
    • /
    • pp.159-167
    • /
    • 2021
  • The increasingly severe environmental problems such as resource depletion and ecological damage, and consumers' concern for sustainable fashion, make the fashion industry chain develop towards green energy saving. The purpose of this study is to explore the attitude and consumption psychology of specific groups towards sustainable fashion consumption, as well as their specific views and attitudes towards recycled textiles or fabrics for re-manufacturing clothing. This paper attempts to understand how the characteristics of recycled clothing affect consumer. Based on the review of relevant literature, a series of determinants affecting consumer behavior is determined, and the characteristics of recycled products, such as expression value and social value, are determined. An online questionnaire was designed based on this conceptual framework, and 226 valid, complete answers were received. The results show that the emphasis on social value and environmental protection consciousness can effectively affect consumers' decision-making. These findings were helpful to the research of whole green environmental protection and ecological clothing recycling industry system, promote the sustainable development of the clothing industry.

Analysis of CO2 Emission Pattern by Use in Residential Sector (가정 부문 이산화탄소 배출량 추이 분석)

  • Yoon, So Won;Lim, Eun Hyouk;Lee, Gyoung Mi;Hong, You Deok
    • Journal of Climate Change Research
    • /
    • v.1 no.3
    • /
    • pp.189-203
    • /
    • 2010
  • The objective of this study is the estimate of $CO_2$ emissions by the energy consumption of functional technology introduced by classifying energy use in households according to functions as well as energy resources. This study also intends to provide the practical basis data in order to establish specific alternatives for GHG mitigation in residential sector with examining the cause analysis affecting $CO_2$ emission increases from 1995 to 2007. The results of this study show a 6.6% increase in the total $CO_2$ from 60,636 thousand tons in 1995 to 64,611 thousand tons in 2007 by using energy in residential sector. Heating is the greatest $CO_2$ emission sector by use, followed electric appliances, cooking, lighting and cooling. Heating sector shows 56.6% reductions from 71.5% in 1995 and as do cooling and electric home appliances, with a 2.4% increase from 0.6% and a 21.8% increase from 14.2% respectively. To analyze factors resulted in $CO_2$ emissions in residential sector, the relevant indicator change rate from 2005 to 2007 was examined. The results find that population, the number of household, housing areas, family patterns, and family income resulted in the $CO_2$ emissions increase in residential sector from 1995 to 2007. On the other hand, carbon intensity and energy intensity contribute to $CO_2$ reduction in residential sector with -2% and -38.7% respectively because of the energy conversion and the improvement of energy efficiency in electronic appliances. This study can be used as a reference when taken account of the reality and considered the introduction of highly effective measures to increase the possibility of mitigation potential in residential sector hereafter.