• Title/Summary/Keyword: 에너지 전환율

Search Result 281, Processing Time 0.036 seconds

A Kinetic Study of Steam Gasification of Woodchip, Sawdust and Lignite (나무칩, 톱밥 바이오매스와 갈탄의 수증기 가스화반응 특성 연구)

  • Kim, Kyungwook;Bungay, Vergel C.;Song, Byungho;Choi, Youngtai;Lee, Jeungwoo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.506-512
    • /
    • 2013
  • Biomass and low-grade coals are known to be better potential sources of energy compared to crude oil and natural gas since these materials are readily available and found to have large reserves, respectively. Gasification of these carbonaceous materials produced syngas for chemical synthesis and power generation. Woodchip, sawdust and lignite were gasified with steam in a thermobalance reactor under atmospheric pressure in order to evaluate their kinetic rate information. The effects of gasification temperature ($600{\sim}900^{\circ}C$) and partial pressure of steam (20~90 kPa) on the gasification rate were investigated. The three different types of gas-solid reaction models were applied to the experimental data to predict the behavior of the gasification reactions. The modified volumetric model predicted the conversion data well, thus the model was used to evaluate kinetic parameters in this study. The observed activation energy of biomass, sawdust and lignite gasification reactions were found to be in reasonable range and their rank was found to be sawdust > woodchip > lignite. The expression of apparent reaction rates for steam gasification of the three solids was proposed to provide basic information on the design of coal gasification processes.

Numerical study on flow characteristics at dividing open-channel with changing bifurcation angle using TELEMAC-2D (TELEMAC-2D모형을 이용한 분류각 변화에 따른 개수로 흐름특성변화 수치모의 연구)

  • Jung, Daejin;Jang, Chang-Lae;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.617-626
    • /
    • 2020
  • This study investigates changes of bifurcation discharge ratio, flow velocity distributions and characteristics of separation zone due to variation of bifurcation angle by using TELEMAC-2D model. When the bifurcation angle is reduced from 90° to 45° without changing the boundary conditions, the bifurcation discharge ratio increased by 1.5 times from 0.523 to 0.785 because of increasing the radius of curvatures, the inertia force of the downstream flow, and the pressure gradient by the downstream boundary conditions. The bifurcation discharge ratio increases non-linearly whenever the bifurcation angle decreases by 15° intervals from 90° to 45° in flow with the upstream Froude number of 0.45 to 0.74. In flow with a maximum Froude number of 0.74, the rate of increase for bifurcation discharge ratio is 31.1% and the minimum value. When the Froude number is 0.58, the bifurcation discharge ratio is 0.7 or less, and the maximum rate of increase for that ratio is 53.5%. As the upstream Froude number decreases less than 0.58, the bifurcation discharge ratio exceeds 0.7, and the rate of increase decreases. When the upstream Froude number is 0.4 higher, the dimensionless width and length changing ratio of the separation zone are about 2.56 and 5.5 times higher than in 0.4 or less.

Simulation of Natural Air Layer Drying of Rough Rice (시뮬레이숀에 의한 벼의 상온통풍층건조방법(常温通風層乾燥方法)에 관(關)한 연구(硏究))

  • Park, Jae Bok;Koh, Hak Kyun;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.8 no.1
    • /
    • pp.47-60
    • /
    • 1983
  • 상온통풍(常溫通風)을 이용(利用)한 In-bin drying에 대(對)한 많은 실험결과(實驗結果)에 의(依)하면 우리나라 10월(月)의 기상조건(氣象條件)은 저온건조(低溫乾燥) system에 적합(適合)한 건조능력(乾燥能力)을 가지고 있는 것으로 나타났다. 최근(最近) Computer를 이용(利用)한 Simulation model이 개발(開發)되어 건조현상(乾操現象)에 관(關)한 경제적(經濟的)이고 효율적(效率的)인 분석(分析)이 가능(可能)하게 되었다. 이러한 분석결과(分析結果)에 의(依)하면 초기함수율(初期含水率)이 높은 벼를 Full-bin을 이용(利用)한 상온통풍건조(常溫通風乾操)를 할 경우(境遇) 건조기간(乾燥期間)이 길어지며 bin내(內)의 상층부(上層部) 곡물(穀物)이 변질(變質)되는 문제점(問題點)이 발생(發生)하였다. 또한 벼의 수확작업체계(收穫作業體系)가 관행(慣行) 및 Binder작업체계(作業體系)에서 점차(漸次) Combine작업체계(作業體系)로 전환(轉換)되어감에 따라 포장(圃場)에서의 건조(乾燥)가 어려우며 예취(刈取), 탈곡작업과정(脫穀作業過程)에서의 기계적(機械的)인 곡물(穀物) 손실(損失)을 줄이기 위(爲)하여 함수율(含水率)이 비교적(比較的) 높은 벼를 수확(收穫)하여야 한다. 본(本) 연구(硏究)의 목적(目的)은 상온통풍건조(常溫通風乾燥)에 있어서 건조능력(乾燥能力)을 증가(增加)시키기 위(爲)하여 곡물(穀物)을 일정기간(一定期間) 나누어서 bin에 넣고 건조(乾燥)를 하는 Layer drying의 Simulation model을 개발(開發)하고 이 Model에 수원지방(水原地方)의 7년간(年間) 평균(平均) 기상자료(氣象資料)를 입력(入力)시켜 곡물(穀物)의 초기함수율(初期含水率), 투입량(投入量), 투입기간(投入期間)의 변화(變化)에 따른 Layer drying현상(現象)을 규명(糾明)하는데 있다. Simulation에 사용(使用)된 bin의 크기는 직경(直徑) 2m, 깊이 1.5m이며 송풍(送風)팬의 용량(容量)은 0.5HP이었다. Simulation분석(分析) 결과(結果)를 요약(要約)하면 다음과 같다. (1) Layer drying의 Simulation model을 개발(開發)하였으며 이 Model은 벼의 상온통풍건조(常溫通風乾燥) 실험(實驗)에서 함수량(含水量) 변화(變化)의 이론치(理論値)와 실제실험치(實際實驗値)가 잘 일치(一致)하였다. (2) 곡물투입기간(穀物投入期間) 1일(日)을 Full-bin drying으로 간주(看做)할 때 Layer drying의 건조성능(乾燥性能)은 Full-bin보다 높은 것으로 나타났다. (3) 연속송풍(連續送風)(24시간(時間))을 할 경우(境遇) 곡물투입기간(穀物投入期間)이 증가(增加)함에 따라 건조기간(乾燥期間)의 감소경향(減少傾向)은 단속송풍(斷續送風)인 경우(境遇)보다 적었지만 건조기간(乾燥期間)은 단축(短縮)되었다. 그러나 건조(乾燥)에너지의 소모(消耗)는 단속송풍(斷續送風)일 때보다 크게 나타났다. (4) 단속송풍(斷續送風)(9 : 00AM~6 : 00PM)일 경우(境遇) 곡물투입기간(穀物投入期間)을 증가(增加)시키면 건조기간(乾燥期間)이 크게 줄어 들었다. (5) 곡물(穀物)의 초기함수율(初期含水率)이 21% 이하(以下)일 경우(境遇) 연속(連續) 및 단속송풍(斷續送風)에서 건조기간(乾燥期間)의 차이(差異)가 별로 없었다. (6) 곡물(穀物)의 초기함수율(初期含水率)이 높으면 Full-bin drying에서는 상부층(上部層)에 곡물(穀物)이 변질(變質)될 우려(憂慮)가 있으나 Layer drying에서는 곡물투입량(穀物投入量)을 조절(調節)하면 이것을 방지(防止)할 수 있었다. (7) 건조(乾燥)가 완료(完了)된 후(後) 층별(層別) 최종곡물(最終穀物) 함수율(含水率)은 모든 건조조건(乾燥條件)에서 동일(同一)하였으나 bin의 하부층(下部層)은 과건조(過乾燥) 물상(物象)을 일으켰다.

  • PDF

Kinetics Study for Wet Air Oxidation of Sewage Sludge (하수슬러지의 습식산화반응에 대한 동력학적 연구)

  • Ahn, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.746-752
    • /
    • 2005
  • In this study, the effect of reaction parameters including reaction temperature, time, and pressure on sludge degradation and conversion to intermediates such as organic acids were investigated at low critical wet air oxidation(LC-WAO) conditions. Degradation pathways and a modified kinetic model in LC-WAO were proposed and the kinetics model predictions were compared with experimental data under various conditions. Results in the batch experiments showed that reaction temperature directly affected the thermal hydrolysis reaction rather than oxidation reaction. The efficiencies of sludge degradation and organic acid formation increased with the increase of the reaction temperature and time. The removal of SS at $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 10 min of reaction time were 52.6%, 68.3%, 72.6%, and 74.4%, respectively, indicating that most organic suspended solids were liquified at early stage of reaction. At $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 40 min of reaction time, the amounts of organic acids formed from 1 g of sludge were 93.5 mg/g SS, 116.4 mg/g SS, 113.6 mg/g SS, and 123.8 mg/g SS, respectively, and the amounts of acetic acid from 1 g of sludge were 24.5 mg/g SS, 65.5 mg/g SS, 88.1 mg/g SS, and 121.5 mg/g SS, respectively. This suggested that the formation of sludge to organic acids as well as the conversion of organic acids to acetic acid increased with reaction temperature. Based on the experimental results, a modified kinetic model was suggested for the liquefaction reaction of sludge and the formation of organic acids. The kinetic model predicted an increase in kinetic parameters $k_1$ (liquefaction of organic compounds), $k_2$ (formation of organic acids to intermediate), $k_3$ (final degradation of intermediate), and $k_4$ (final degradation of organic acids) with reaction temperature. This indicated that the liquefaction of organic solid materials and the formation of organic acids increase according to reaction temperature. The calculated activation energy for reaction kinetic constants were 20.7 kJ/mol, 12.3 kJ/mol, 28.4 kJ/mol, and 54.4 kJ/mol, respectively, leading to a conclusion that not thermal hydrolysis but oxidation reaction is the rate-limiting step.

Performance of a Molten Carbonate Fuel Cell With Direct Internal Reforming of Methanol (메탄올 내부개질형 용융탄산염 연료전지의 성능)

  • Ha, Myeong Ju;Yoon, Sung Pil;Han, Jonghee;Lim, Tae-Hoon;Kim, Woo Sik;Nam, Suk Woo
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.329-335
    • /
    • 2020
  • Methanol synthesized from renewable hydrogen and captured CO2 has recently attracted great interest as a sustainable energy carrier for large-scale renewable energy storage. In this study, molten carbonate fuel cell's performance was investigated with the direct conversion of methanol into syngas inside the anode chamber of the cell. The internal reforming of methanol may significantly improve system efficiency since the heat generated from the electrochemical reaction can be used directly for the endothermic reforming reaction. The porous Ni-10 wt%Cr anode was sufficient for the methanol steam reforming reaction under the fuel cell operating condition. The direct supply of methanol into the anode chamber resulted in somewhat lower cell performance, especially at high current density. Recycling of the product gas into the anode gas inlet significantly improved the cell performance. The analysis based on material balance revealed that, with increasing current density and gas recycling ratio, the methanol steam reforming reaction rate likewise increased. A methanol conversion more significant than 90% was achieved with gas recycling. The results showed the feasibility of electricity and syngas co-production using the molten carbonate fuel cell. Further research is needed to optimize the fuel cell operating conditions for simultaneous production of electricity and syngas, considering both material and energy balances in the fuel cell.

Characteristics of Coal Slurry Gasification under Partial Slagging Operating Condition (부분 용융 운전 조건에서 석탄슬러리 가스화 운전 특성)

  • Lee, Jin Wook;Chung, Seok Woo;Lee, Seung Jong;Jung, Woohyun;Byun, Yong Soo;Hwang, Sang Yeon;Jeon, Dong Hwan;Ryu, Sang Oh;Lee, Ji Eun;Jeong, Ki Jin;Kim, Jin Ho;Yun, Yongseung
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.657-666
    • /
    • 2014
  • Coal gasification technology is considered as next generation clean coal technology even though it uses coal as fuel which releases huge amount of greenhouse gas because it has many advantages for carbon capture. Coal or pet-coke slurry gasification is very attractive technology at present and in the future because of its low construction cost and flexibility of slurry feeding system in spite of lower efficiency compared to dry feeding technology. In this study, we carried out gasification experiment using bituminous coal slurry sample by integrating coal slurry feeding facility and slurry burner into existing dry feeding compact gasifier. Especially, our experiment was conducted under fairly lower operation temperature than that of existing entrained-bed gasifier, resulting in partial slagging operation mode in which only part of ash was converted to slag and the rest of ash was released as fly ash. Carbon conversion rate was calculated from data analysis of collected slag and ash, and then cold gas efficiency, which is the most important indicator of gasifier performance, was estimated by carbon mass balance method. Fairly high performance considering pilot-scale experiment, 98.5% of carbon conversion and 60.4% of cold gas efficiency, was achieved. In addition, soundness of experimental result was verified from the comparison with chemical equilibrium composition and energy balance calculations.

Optimization for Ammonia Decomposition over Ruthenium Alumina Catalyst Coated on Metallic Monolith Using Response Surface Methodology (반응표면분석법을 이용한 루테늄 알루미나 메탈모노리스 코팅촉매의 암모니아 분해 최적화)

  • Choi, Jae Hyung;Lee, Sung-Chan;Lee, Junhyeok;Kim, Gyeong-Min;Lim, Dong-Ha
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2022
  • As a result of the recent social transformation towards a hydrogen economy and carbon-neutrality, the demands for hydrogen energy have been increasing rapidly worldwide. As such, eco-friendly hydrogen production technologies that do not produce carbon dioxide (CO2) emissions are being focused on. Among them, ammonia (NH3) is an economical hydrogen carrier that can easily produce hydrogen (H2). In this study, Ru/Al2O3 catalyst coated onmetallic monolith for hydrogen production from ammonia was prepared by a dip-coating method using a catalyst slurry mixture composed of Ru/Al2O3 catalyst, inorganic binder (alumina sol) and organic binder (methyl cellulose). At the optimized 1:1:0.1 weight ratio of catalyst/inorganic binder/organic binder, the amount of catalyst coated on the metallic monolith after one cycle coating was about 61.6 g L-1. The uniform thickness (about 42 ㎛) and crystal structure of the catalyst coated on the metallic monolith surface were confirmed through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Also, a numerical optimization regression equation for NH3 conversion according to the independent variables of reaction temperature (400-600 ℃) and gas hourly space velocity (1,000-5,000 h-1) was calculated by response surface methodology (RSM). This model indicated a determination coefficient (R2) of 0.991 and had statistically significant predictors. This regression model could contribute to the commercial process design of hydrogen production by ammonia decomposition.

Effect of Substrate to Inoculum Ratio on Biochemical Methane Potential in the Thermal Pretreatment of Piggery Sludge (양돈분뇨의 열전처리에서 기질과 접종액의 비율이 메탄생산 퍼텐셜에 미치는 영향)

  • Kim, Seung-Hwan;Kim, Ho;Oh, Seong-Yong;Kim, Chang-Hyun;Yoon, Young-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.532-539
    • /
    • 2012
  • This study was carried out to investigate the effect of substrate to inoculum ratio on ultimate methane potential ($B_u$) from piggery wastes. BMP(Biochemical methane potential) assays were executed for the three samples that have different organic characteristics (Filtrate of pig slurry, LF; Thermal hydrolysate of piggery sludge cake, TH; Mixture of LF and TH at the ratio of 4 to 1, Mix), and $B_u$ values obtained from BMP assays were compared with the theoretical methane potential ($B_{th}$) of each samples. While $B_u$ values (0.27, 0.44, and $0.46Nm^3\;Kg^{-1}-VS_{added}$) of TH sample that was pretreated with thermal hydrolysis were below the $B_{th}$ at all S/I ratios (0.1, 0.3, and 0.5), and $B_u$ values of LF (0.64 and $0.53Nm^3\;Kg^{-1}-VS_{added}$ for the S/I ratios of 0.1 and 0.3, respectively) at the lower S/I ratios of 0.1 and 0.3 exceeded the $B_{th}$ values ($0.418Nm^3\;Kg^{-1}-VS_{added}$). And also biodegradability ($B_u/B_{th}$) of LF sample were obtained as 152.07%, 122.67%, and 95.71% at the S/I ratios of 0.1, 0.3, and 0.5, respectively, and unreasonable $B_u/B_{th}$ values were presented at lower S/I ratios of 0.1 and 0.3. $B_u$ and $B_u/B_{th}$ of Mix sample showed a similar tendency with those of LF sample. Therefore, TH sample by thermal hydrolysis pretreatment showed lower anaerobic biodegradability than those of other samples (LF and Mix) and ultimate methane potentials of LF and Mix samples were overestimated in the lower S/I ratio of 0.1 and 0.3.

Reclaimed Products to Recycling and Energy Recovery for Sustainable Use of Closed Non Sanitary Landfills through Reclamation Works (사용종료(使用終了) 비위생매립지(非衛生埋立地)의 순환적(循環的) 사용(使用)을 위한 선별물질(選別物質)의 활용(活用) 가능성(可能性) 평가(評價))

  • Lee, Byung-Sun;Na, Kyung-Duk;Han, Sang-Kuk;Phae, Chae-Gun;Oh, Sae-Eun
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.17-29
    • /
    • 2012
  • potential assessment of converting closed non sanitary landfills into sustainable landfill through the reclamation works(= landfill mining project) of illegal landfill discovered in land development site using Sustainable Landfill Reclamation system(SLR-system) was investigated. The SLR system had treatment capacity of 91.4 $m^3/hr$ (130.61 ton/hr) in condition of 28.0% of water content. Recovery ratio and purity of sorted soil were 98.9% and 99.66%, respectively. Sorted combustibles were 91.8% and 92.0%, respectively. Especially, high heating value (HHV) and low heating value(LHV) of combustibles were 4,282kcal/kg and 3,636 kcal/kg, respectively, in considering the energy content and recovery ratio of combustibles. Therefore, combustibles separated from landfill site have higher value than Fluff RDF standard value(3,500kcal/kg) of MOE. RDF can be produced with combustibles by 84.43%. Averaged size and organic foreign matter content of the sorted soil were less than 035mm and 0.31 %(VN), respectively. In addition, concentration of all contents of hazardous matters containing soils met safety standards. Therefore, it is possible to be recycled as refilling and cover materials to rebuild Sustainable landfills by 98.42%.

Evaluation of Sustainability for Olive Flounder Production by the Systems Ecology I. EMERGY Analysis of Olive Flounder Production (시스템 생태학적 접근법에 의한 넙치생산의 지속성 평가 I. 넙치생산에 대한 EMERGY 분석)

  • KIM Nam Kook;SON Ji Ho;KIM Jin Lee;LEE Suk Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.218-224
    • /
    • 2001
  • Olive flounder is one of the most important aquaculture species in Korea. Interest in the aquaculture of olive flounder has increased recently because of its good growth characteristics and high market price, However, the productivity of olive flounder aquaculture depends on economic inputs such as fuels, facilities, and labor, In this study, EMERGY concepts was used to compare the environment and economy of two olive flounder production methods, fishing fisheries and aquaculture, and to evaluate the sustainability of olive flounder production, EMERGY spelled with an 'm' is a universal measure of real wealth of the work of nature and society made on a common basis. Calculations of EMERGY production and storage provide a basis for making choices about environment and economy following. the general public policy to maximize real wealth, production and use. EMERGY flows from environment were $94.13\%$ for olive flounder fishing fisheries, and $2.20\%$ for aquaculture. EMERGY yield ratio, environmental loading ratio and sustainability index were 17.05, 1.02 and 274 for fishing fisheries and 0.06, 44.41 and 0.023 for aquaculture, respectively. These ratios indicate that the fishing fisheries will yield more net EMERGY, while the aquaculture requires a lower investment of EMERGY.

  • PDF