• Title/Summary/Keyword: 에너지 전환율

Search Result 281, Processing Time 0.023 seconds

Study on the Pyrolysis Kinetics of Deasphalted Oil Using Thermogravimetric Analysis (열중량 분석법을 이용한 Deasphalted Oil의 열분해 특성 분석)

  • Shin, Sang Cheol;Lee, Jung Moo;Lee, Ki Bong;Jeon, Sang Goo;Na, Jeong Geol;Nho, Nam Sun
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.391-397
    • /
    • 2012
  • The depletion of conventional oil reserves and the increasing energy need in developing countries such as China and India result in exceeding oil demand over supply. As a solution of the problem, the efficient utilization of heavy oil has been receiving more and more interest. In order to utilize heavy oil, upgrading processes are required. Among the upgrading processes, thermal decomposition is thought to be relatively simple and economical. In this study, to understand basic characteristics of thermal decomposition of heavy oil, we conducted pyrolysis experiments of deasphalted oil (DAO) produced by a solvent deasphalting process. DAO is a mixture of many components and consists mainly of materials of carbon number 20~40. For the comparison with results of DAO pyrolysis, additional pyrolysis experiments with single materials of carbon number 30 ($C_{30}H_{62}$, $C_{30}H_{58}O_4S$, $C_{30}H_{63}O_3P$) were conducted. Pyrolysis experiments were carried out non-isothermally with variation of heating rate (10, 50, $100^{\circ}C$/min) in a thermogravimetric analyzer. Average pyrolysis activation energy determined by using Arrhenius method, Ingraham and Marrier method, and Coats and Redfern method was 72~99 kJ/mol. In the activation energy calculated by Ozawa-Flynn-Wall method, DAO had wider variation than other single materials.

The Study of CO2 Gasification of Low Rank Coal Impregnated by K2CO3, Mn(NO3)2, and Ce(NO3)3 (저급석탄에 K2CO3와 Mn(NO3)2 및 Ce(NO3)3이 CO2-석탄 가스화 반응에 미치는 영향)

  • Park, SangTae;Choi, YongTaek;Shon, JungMin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.312-318
    • /
    • 2011
  • We have investigated the kinetics and catalytic activity of $CO_2$-lignite gasification with various metal precursors as catalysts. $K_2CO_3$, $Mn(NO_3)_2$, and $Ce(NO_3)_3$ were used and impregnated on a coal using an evaporator. The gasification experiments were carried out with the low rank coal loaded with 5 wt% catalyst at the temperature range from $700{\sim}900^{\circ}C$ and atmospheric pressure with the $N_2-CO_2$ reactant gas mixture. The catalytic effect on the gasification rate of the low rank coal with $CO_2$ was determined by the thermogravimetric analyzer. It was observed that the low rank coal reached the complete carbon conversion regardless of the kinds of catalysts at $900^{\circ}C$ from the results of TGA. The catalytic activity was ranked as 5 wt% $K_2CO_3$ > 5 wt% $Mn(NO_3)_2$ > 5 wt% $Ce(NO_3)_3$ > Non-catalyst at $900^{\circ}C$. The gasification rate increased with increasing the temperature. The activation energy of the catalytic gasification with 5 wt% $K_2CO_3$ was 119.0 kJ/mol, which was the lowest among all catalysts.

Development of New Device to Improve Sucess Rate of Maze Procedure with Radiofrequency Energy (고주파에너지를 이용한 미로술식의 성적향상을 위한 새로운 기구의 개발)

  • 박남희;유양기;이재원
    • Journal of Chest Surgery
    • /
    • v.37 no.6
    • /
    • pp.467-473
    • /
    • 2004
  • Background: The sinus conversion rate after the maze procedure in chronic atrial fibrillation using radiofrequency energy is lower than with either conventional 'cut and saw' technique or cryothermia. The creation of incomplete transmural lesions due to poor tissue-catheter contact is thought to be the main cause. To address this problem, the current study was aimed to evaluate the effectiveness of a specially constructed compression device designed to enhance tissue catheter contact during unipolar radiofrequency catheter ablation. Material and Method: Circum-ferential right auricular epicardial lesions were created with a linear radiofrequency catheter in 10 anesthetized pigs. A device specially designed to increase contact by compression of the catheter to the atrial wall was used in 5 pigs (study group). This device was not used in the control group (5 pigs). Conduction block across the right auricular lesion was assessed by pacing, and the transmurality of the lesions were confirmed by microscopic examination. Result: Conduction block was observed in a total of 8 pigs; 5 in study group and 3 in control group. Transmural injury was confirmed microscopically by the accumulation of acute inflammatory cells and loss of elastic fibers in the endocardium. In two pigs with failed conduction block, microscopic examination of the endocardium appeared normal. Conclusion: Failed radiofrequency ablation is strongly related to non-transmural energy delivery. The specially constructed compression device in the current study was successful in creating firm tissue-catheter contact and thereby generating transmural lesions during unipolar radiofrequency ablation.

Ammoxidation of Methylpyrazine over Molybdenum Phosphate Catalyst (몰리브덴인산화물 촉매에 의한 메틸피라진의 가암모니아 산화반응)

  • Shin, Chae-Ho;Chang, Tae-Sun;Cho, Deug-Hee;Lee, Dong-Koo;Lee, Young K.
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.749-755
    • /
    • 1997
  • Molybdenum phosphate(P/Mo = 0.6) has been synthesized with ammonium molybdate and phosphoric acid under aqueous solution. The kinetics of the ammoxidation of methylpyrazine over molybdenum phosphate catalyst was investigated with the variation of reaction temperature and partial pressure of methylpyrazine, oxygen and ammonia, respectively at atmospheric pressure. The catalytic activity was constant for 300hrs operation under our experimental conditions. Under the steady-state condition, the rate equation of methylpyrazine was shown as $-r=kP_{MP}P_{NH3}{^0}P_{O2}{^{\gamma}}({\gamma}=2.2;1.3{\leq}P_{O2}(kPa){\leq}4)$. The apparent activation energy was 29.6kcal/mol below 623K. The main product obtained in the ammoxidation of methylpyrazine is cyanopyrazine whose selectively was kept always over 90% regardless of conversion.

  • PDF

Kinetics of Catalytic Oxidation of Vinyl Chloride over CrOx/γ-alumina (CrOx/γ-alumina 촉매상에서 Vinyl Chloride의 산화반응 속도해석)

  • Lee, Hae-Wan;Kim, Young Chai;Moon, Sei-Ki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.85-92
    • /
    • 1999
  • The complete catalytic oxidation of vinyl chloride was investigated over chromium oxide supported ${\gamma}$-alumina using a fixed bed micro-reactor at temperature between 240 and $300^{\circ}C$ and concentration between 600 and 3500 ppm. The oxidation of vinyl chloride was nonlinear in the concentration of vinyl chloride and zeroth order in the concentration of oxygen. The addition of HCl and $H_2O$ as products to the feed stream didn't influence the conversion of vinyl chloride. Several kinetic rate model were tested to describe the data over the range of condition investigated, and developed a model which provide the best correlation of experimental data. The resulting model of kinetic rate was derived by assuming that the reacting occurred via adsorption and subsequent decomposition of the vinyl chloride onto the oxygen covered chromium oxide surface, with the reaction being inhibited by the adsorption of vinyl chloride. The percent standard deviation between the predicted and experimental was about 5.2%, and the activation energy was 18.9 kcal/mol.

  • PDF

Catalytic Oxidation of Methane Using the Manganese Catalysts (망간촉매를 이용한 메탄의 산화반응)

  • Jang, Hyun-Tae;Cha, Wang-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.537-544
    • /
    • 2011
  • This work was conducted to investigate the oxidation characteristics of methane having the highest ignition temperature among the other hydrocarbon gases using transition metal catalysts. The catalyst used for methane oxidation was manganese oxide having a various oxidation number, such as MnO, $MnO_2$, $Mn_2O_3$, $Mn_3O_4$, $Mn_4O_5$. The manganese oxide(MnxOy) catalyst is impregnated on $TiO_2$, $Al_2O_3$ for methane oxidation. To enhanced both of activity and life time of catalysts, Ni and Co was used as a promoter. In this study, various co-catalysts were synthesized by using excess wet impregnation method. The effect of reaction temperature and space velocity was measured to calculate the activity of catalysts such as, activation energy of $T_{50}$, and $T_{90}$. The life time of bi-metallic manganese mixture, such as Mn-Co and Mn-Ni catalysts, were increased more 10 % than manganese oxide catalyst, but activity of those was decreased slightly.

Synthesis and Monomer Reactivity Ratio of PNIPAAM-PMMA Random Copolymer (PNIPAAM-PMMA Random Copolymer의 합성 및 단량체 반응성비 측정)

  • 이창배;조창기
    • Polymer(Korea)
    • /
    • v.24 no.2
    • /
    • pp.168-173
    • /
    • 2000
  • Radical copolymerization of N-isopropylacrylamide (NIPAAM) with methyl methacrylate (MMA) was carried out in 1,4-dioxane using 2,2'-azobisisobutyronitrile (AIBN). To investigate the reactivity ratios of NIPAAM and MMA at different reaction temperatures, the copolymerization was allowed to proceed to low conversion (less than 10 wt%), and the reaction temperatures were 50, 60, and 7$0^{\circ}C$. The monomer reactivity ratios of NIPAAM and MMA were estimated by the graphical methods according to the Finemann-Ross equation. The ${\gamma}$$_1$ and ${\gamma}$$_2$ values for NIPAAM-MMA were 0.259 and 2.782 at 5$0^{\circ}C$, 0.271 and 2.819 at 6$0^{\circ}C$, and 0.286 and 2.915 at 7$0^{\circ}C$, respectively. As the reaction temperature increased, the ${\gamma}$$_1$ and ${\gamma}$$_2$ values increased. The activation energy difference was estimated by comparing the reactivity ratios at different reaction temperatures.

  • PDF

Comparison of Counter-Current Cooling and Pool Boiling System Through Modeling and Simulation of a Pilot-Scale Fixed bed Reactor for Dimethyl Ether(DME) Synthesis (Dimethyl Ether(DME) 합성을 위한 파일럿 규모의 고정층 반응기의 모델링과 모사를 통한 향류 냉각방식과 포화액체 풀비등 방식의 비교)

  • Song, Daesung;Go, Jae Wook;Yoon, En Sup
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.446-452
    • /
    • 2009
  • The behavior of a one-step fixed bed reactor which directly synthesizes dimethyl ether(DME) from Natural Gas was simulated. In the reactor, the prevention of the occurrence of hot spots which can cause deactivation of catalysts is pivotal, since methanol synthesis and dehydration reaction involved in the synthesis of DME are highly exothermic. Therefore, we simulated and compared performance of the reactor with counter-current cooling and pool boiling system that can be applied to a commercial plant. As a result, we found that counter-current cooling system is more effective in terms of CO conversion and DME productivity. However, pool boiling system can operate in a small temperature gradient that can decrease problems caused by hot spot. And, the system can operate in a safer range.

Kinetic Consideration of Melt-copolymerization of Poly(butylene terephthalate) (PBT) and p-Acetoxybenzoic Acid (ABA) (폴리부틸렌테레프탈레이트와 파라아세톡시벤조산의 용융공중합 속도론에 대한 고찰)

  • 김도경;박수영;박종래
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.16-22
    • /
    • 2000
  • Poly(butylene terephthalate- co-oxybenzoate)(PBOT) containing mesogenic oxybenzoate units in the main chain was synthesized through ester exchange reaction by melt mixing of poly(butylene terephthalate)(PBT) and p-acetoxybenzoic acid (ABA). From the kinetics of the copolymerization reaction, the activation energies and the rate constants of homopolymerization and copolymerization, k$_{h}$ and k$_{c}$, could be determined. From the reaction conditions of different compositions, 4/6, 5/5, and 6/4 of PBT/ABA, at 250, 260, and 27$0^{\circ}C$, it was revealed that copolymerization between PBT and ABA proceeds on a pseudo-second order reaction if the ABA content and its conversion are low. In this case, the ratio of rate constants of homopolymerization to copolymerization was in the range from 1.08 to 3.17, indicating that the copolymer with more notable block character was obtained at the higher mole fraction of ABA and at higher temperature.e.e.

  • PDF

Copolymerization and Characteristics of Styrene and Fluorine-Containing Acrylate (스티렌과 불소함유 아크릴레이트의 공중합 및 공중합체의 특성)

  • 김상신;이상원;허정림;허완수
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2002
  • The free radical bulk copolymerizations of perfluoroalkylethyl acrylate(FA) containing perfluoro group ($CF_3(CF_2)_nCH_2CH_2$-; n=5, 7, 9, 11) with styrene were conducted at $60^{\circ}C$ using AIBN as an initiator. Reactivity ratios($r_1$, $r_2$) were determined from monomer feed compositions and the NMR spectroscopically measured copolymer compositions using Kelen-Tudos method. The structures of copolymers were characterized with FT-IR and $^1H-NMR$ analysis. Their thermal properties investigated with DSC and TGA were decreased with increasing the content of fluorinated acrylate in the copolymer. Their surface free energies were calculated with measuring contact angles of the copolymers and PMMA blends with a small amount of them.