• Title/Summary/Keyword: 에너지 분리

Search Result 1,544, Processing Time 0.024 seconds

Production of Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) by Bacillus sp. EMK-5020 Using Makgeolli Lees Enzymatic Hydrolysate and Propionic Acid as Carbon Sources (막걸리 주박 가수분해 산물과 propionic acid를 탄소원으로 이용한 Bacillus sp. EML-5020 균주로부터 poly (3-hydroxybutyrate-co-3-hydroxyvalerate) 생합성)

  • Kwon, Kyungjin;Kim, Jong-Sik;Chung, Chung-Wook
    • Journal of Life Science
    • /
    • v.32 no.7
    • /
    • pp.510-522
    • /
    • 2022
  • In this study, to biosynthesize PHA with properties more similar to polypropylene, a Bacillus sp. EMK-5020 strain that biosynthesized poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was isolated from soil. Bacillus sp. EMK-5020 strain biosynthesized PHBV containing 1.3% 3-hydroxyvalerate (3HV) using reducing sugar contained in Makgeolli lees enzymatic hydrolysate (MLEH) as a single carbon source. As the amount of propionic acid, which was added as a second carbon source, increased, the content of 3HV also increased. PHBV containing up to 48.6% of 3HV was synthesized when 1.0 g/l of propionic acid was added. Based on these results, the strain was cultured for 72 hr in a 3 l fermenter using reducing sugar in MLEH (20 g/l) and propionic acid (1 g/l) as the main and secondary carbon sources, respectively. As a result, 6.4 g/l DCW and 50 wt% of PHBV (MLEH-PHBV) containing 8.9% 3HV were biosynthesized. Through gel permeation chromatography and thermogravimetric analysis, it was confirmed that the average molecular weight and the decomposition temperature of MLEH-PHBV were 152 kDa and 273℃, respectively. In conclusion, the Bacillus sp. EMK-5020 strain could biosynthesize PHBV containing various 3HV fractions when MLEH and propionic acid were used as carbon sources, and PHBV-MLEH containing 8.9% 3HV was confirmed to have higher thermal stability than standard PHBV (8% 3HV).

Forward Osmotic Pressure-Free (△𝜋≤0) Reverse Osmosis and Osmotic Pressure Approximation of Concentrated NaCl Solutions (정삼투-무삼투압차(△𝜋≤0) 법 역삼투 해수 담수화 및 고농도 NaCl 용액의 삼투압 근사식)

  • Chang, Ho Nam;Choi, Kyung-Rok;Jung, Kwonsu;Park, Gwon Woo;Kim, Yeu-Chun;Suh, Charles;Kim, Nakjong;Kim, Do Hyun;Kim, Beom Su;Kim, Han Min;Chang, Yoon-Seok;Kim, Nam Uk;Kim, In Ho;Kim, Kunwoo;Lee, Habit;Qiang, Fei
    • Membrane Journal
    • /
    • v.32 no.4
    • /
    • pp.235-252
    • /
    • 2022
  • Forward osmotic pressure-free reverse osmosis (Δ𝜋=0 RO) was invented in 2013. The first patent (US 9,950,297 B2) was registered on April 18, 2018. The "Osmotic Pressure of Concentrated Solutions" in JACS (1908) by G.N. Lewis of MIT was used for the estimation. The Chang's RO system differs from conventional RO (C-RO) in that two-chamber system of osmotic pressure equalizer and a low-pressure RO system while C-RO is based on a single chamber. Chang claimed that all aqueous solutions, including salt water, regardless of its osmotic pressure can be separated into water and salt. The second patent (US 10.953.367B2, March 23, 2021) showed that a low-pressure reverse osmosis is possible for 3.0% input at Δ𝜋 of 10 to 12 bar. Singularity ZERO reverse osmosis from his third patent (Korea patent 10-22322755, US-PCT/KR202003595) for a 3.0% NaCl input, 50% more water recovery, use of 1/3 RO membrane area, and 1/5th of theoretical energy. These numbers come from Chang's laboratory experiments and theoretical analysis. Relative residence time (RRT) of feed and OE chambers makes Δ𝜋 to zero or negative by recycling enriched feed flow. The construction cost by S-ZERO was estimated to be around 50~60% of the current RO system.

Examination of the Central Metabolic Pathway With Genomics in Lactiplantibacillus plantarum K9 (Lactiplantibacillus plantarum K9 유전체 분석을 통해 필수 물질대사 경로의 탐색)

  • Sam Woong Kim;Young Jin Kim;Hyo In Choi;Sang Won Lee;Won-Jae Chi;Woo Young Bang;Tae Wan Kim;Kyu Ho Bang;Sang Wan Gal
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.465-475
    • /
    • 2024
  • Lactiplantibacillus plantarum K9 is a probiotic strain that can be utilized from various bioactive substances isolated from Protaetia brevitarsis seulensis larvae. In this study, a genetic analysis of L. plantarum K9 revealed the existence of a bacterial chromosome and three plasmids. The glycolysis pathway and pentose phosphate pathway were examined for their normal functioning via an analysis of the core metabolic pathways of L. plantarum K9. Since the key enzymes, fluctose-1,6-bisphospatase (EC: 3.1.3.11) and 6-phosphogluconate dehydratase (EC: 4.2.1.12)/2-keto-deoxy-6-phosphogluconate (KDPG) aldolase (EC: 4.2.1.55), of gluconeogenesis and the ED pathway were not identified from the L. plantarum K9 genome, we suggest that gluconeogenesis and the ED pathway are not performed in L. plantarum K9. Additionally, while some enzymes, related to fumarate and malate biosyntheses, involved in the TCA cycle were identified from L. plantarum K9, the enzymes associated with the remaining TCA cycle were absent, indicating that the TCA cycle cannot proceed. Meanwhile, based on our findings, we propose that the oxidative electron transport system performs class IIB-type (bd-type) electron transfer. In summary, we assert that L. plantarum K9 performs homolactic fermentation, executes gluconeogenesis and the pentose phosphate pathway, and carries out energy metabolism through the class IIB-type oxidative electron transport system. Therefore, we suggest that L. plantarum K9 has relatively high lactic acid production, and that it has excellent antibacterial activity, as a result, compared to other lactic acid bacterial strains. Moreover, we speculate that L. plantarum K9 has an oxidative electron transport capability, indicating that it is highly resistant to oxygen and suggesting that it has fine cultivation characteristics, which collectively make it highly suitable for use as a probiotic.

Studies on the Electrochemical Behavior of Heavy Lanthanide Ions and the Synthesis, Characterization of Heavy Metal Chelate Complexes(II). Synthesis and Characterization of Eight Coordinate Tungsten(IV) and Cerium(IV) Chelate Complex (무거운 란탄이온의 전기화학적 거동 및 중금속이온의 킬레이트형 착물의 합성 및 특성에 관한 연구(제2보). 8배위 텅스텐(IV)과 세륨(IV)의 킬레이트형 착물의 합성 및 특성)

  • Kang, Sam Woo;Chang, Choo Wan;Suh, Moo Yul;Lee, Doo Youn;Choi, Won Jong
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.41-49
    • /
    • 1992
  • An attempt was made to prepare two series of tetrakis eight-coordinate tungsten(IV) and cerium(IV) complexes containing the 5,7-dichloro-8-quinolinol(N:${\pi}$-acceptor atom, O:${\pi}$-donor atom) ligand. Tetrakis eight-coordinate tungsten(IV) complex of 2-mercaptopyrimidine(N:${\pi}$-acceptor atom, S:${\pi}$-donor atom) ligand have also been prepared. And the new series of mixed-ligand eight-coordinate tungsten(IV) complexes containing bidentate ligands 5,7-dichloro-8-quinolinol and 2-mercaptopyrimidine have been prepared, isolated by TLC and characterized. $W(dcq)_4$, $W(dcq)_3(mpd)_1$, $W(dcq)_2(mpd)_2$, $W(dcq)_1W(dcq)_3$ and $W(mpd)_4$ complexes of MLCT absorption band appeared to 710nm, 680nm, 625nm, 581nm, and 571nm(${\varepsilon}\;max={\sim}>{\times}10^4$) on low-energy respectively. The specific absorption wave length of $Ce(dcq)_4$ is appeared 520nm(${\varepsilon}\;max={\sim}>{\times}10^4$). The Chemical shift values by proton of coordinated position appeared to $W(dcq)_4$ [$H_2:8.9ppm$]; $W(dcq)_3(mpd)_1$ [$H_2:9.3$,$H_6:9.2ppm$]; $W(dcq)_2(mpd)_2$ [$H_2:9.7$,$H_6:8.95ppm$]; $W(dcq)_1(mpd)_3$ [$H_2:9.8$,$H_6:9.4ppm$]; $W(mpd)_4$ [$H_6:8.8ppm$]; $Ce(dcq)_4$ [$H_2:9.3ppm$] with $^1H$-NMR. The inertness of mixed-ligand eight coordinate tungsten(IV) complexes have been investigated by UV-Vis. spectroscopic method in dimethylsulfoxide at $90^{\circ}C$. The inertness of $W(dcq)_n(mpd)_{4-n}$ complexes showed the following order, $W(dcq)_3(mpd)_1;k_{obs.}=3.8{\times}10^{-6}$ > $W(mpd)_4;k_{obs.}=6.0{\times}10^{-6}$ > $W(dcq)_4;k_{obs.}=6.4{\times}10^{-6}$ > $W(dcq)_2(mpd)_2;k_{obs.}=7.0{\times}10^{-6}$ > $W(dcq)_1(mpd)_3;k_{obs.}=1.7{\times}10^{-5}$, which showed the inertness until 16days, 10days, 9days, 8days, and 4days. The $W(mpd)_4$ is very inert as $k_{obs.}=3.6{\times}10^{-6}$(16days) in xylene at $90^{\circ}C$ and $k_{obs.}=6.0{\times}10^{-6}$(10days) in DMSO at $90^{\circ}C$.

  • PDF