• Title/Summary/Keyword: 에너지 및 연료 기술

Search Result 645, Processing Time 0.033 seconds

Removal of tar and particulate from gasification process using pre-coating technology (바이오매스 가스화 공정의 생성가스 중 타르 및 입자 제거를 위한 pre-coating 기술 연구)

  • Kim, Joon-Yub;Choi, Byoung-Kwon;Jo, Young-Min;Kim, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.804-815
    • /
    • 2019
  • Due to the depletion and environmental problems of fossil fuel, biomass has arisen as an alternative energy source. Biomass is a renewable and carbon-neutral source. However, it is moister and has lower energy density. Therefore, biomass needs thermal chemical conversion processes like gasification, and it does not only produce a flammable gas, called 'syngas', which consists of CO, H2, and CH4, but also some unwanted byproducts such as tars and some particulates. These contaminants are condensed and foul in pipelines, combustion chamber and turbine, causing a deterioration in efficiency. Thus this work attempted to find a method to remove tars and particles from syngas with a filter which adopts a pre-coating technology for preventing blockage of the filter medium. Hydrated limestone powder and activated carbon(wood char) powder were used as the pre-coat materials. The removal efficiency of the tars was 86 % and 80 % with activated carbon(wood char) coating and hydrated limestone coating, respectively.

2050 Carbon-neutrality scenario to reduce greenhouse gas emissions in domestic building sector (2050년 국내 건물 부문의 온실가스 감축을 위한 탄소중립 시나리오 연구)

  • Jiwoo Choi;Hakgeun Jeong;Hyungjun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.396-396
    • /
    • 2023
  • 기후 위기에 대한 대응으로 현재 많은 국가에서 2050년 탄소중립을 목표로 하고 있으며, 우리나라도 2050년까지 탄소중립을 선언하고 다양한 부문의 배출 절감 계획을 내세웠다. 현재 건물 부문에서는 2050년의 목표배출량을 6.2 백만톤 CO2eq으로 설정하고 관련 정책적 수단을 검토 중이지만 달성 방안 등에 대해서는 구체적으로 제시하지 못하고 있다. 본 연구에서는 국내 건물 부문의 이산화탄소의 배출량 산정 모델을 개발하여, 2050년까지 이산화탄소 배출 저감 시나리오를 시뮬레이션하였다. 이를 토대로 국내의 건물 부문 탄소중립 가능성을 검토한 통합 시나리오를 제시하고, 향후 정책 및 기술 개발의 방향성을 제시한다. 탄소배출량 산정모델은 연면적 예측 및 사용 에너지의 원단위 환산, 탄소배출계수 등을 고려해 개발하였고, 이를 활용하여 4가지 탄소배출 시나리오를 분석하였다. 먼저 현재 정책 기반 탄소 배출 시나리오는 탄소중립에 이르지 못하여 더 강화된 시나리오의 필요성을 보여준다. 신규 건물을 대상으로 한 제로 에너지화 제도 기반 시나리오는 전체 탄소배출량에 큰 기여를 하지 못하며, 기존 건물 대상의 그린 리모델링 제도 기반 시나리오에서는 10년 이상 건물에 50% 이상의 높은 에너지 효율 개선을 시행해야 한다는 결과를 도출하였다. 또한 전기화 시나리오에서는 화석연료와 전력의 탄소배출계수를 비교하여 적절한 에너지 전환 시점을 계산하였다. 그 결과, 건물 부문에서 2050년까지 탄소배출량 감축 목표 달성을 위해 신축 건물의 에너지 자립율 100%, 에너지 전환 계획과 연동한 건물의 전기화, 그리고 그린리모델링을 통한 효율 개선 기준을 47% 이상 달성하는 조건을 만족해야 한다는 결과를 얻었다. 이 연구는 도전적인 온실가스 감축 마련의 필요성을 제시하였으며, 탄소중립 가능성을 제시하여 실질적인 감축정책에 기여할 것으로 기대한다.

  • PDF

A study on the Optimization of Hydrogen Production and Purification System for PEMFC (PEMFC에 사용되는 수소 생산 및 정화 기술 최적화 연구 )

  • SEOK KYUN KO;SANGYONG LEE
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • A fuel handling process combined with a pressure swing adsorption system (PSA) was simulated to produce pure hydrogen with a purity greater than 99.97%. The simulation consists of two parts. The fuel processing part consisting of reformer and water-gas shift reaction was simulated with Aspen plus®, and the hydrogen purification part consisting of PSA was simulated with Aspen Adsorption®. In this study, the effect of reformer temperature and pressure on the total hydrogen production yield was investigated. Simulations were performed over a temperature range of 700 to 1,000℃ and a pressure range of 1 to 10 bar. The total hydrogen production yield increased with increasing temperature and decreasing pressure. The maximum hydrogen yield was less than 50% in the simulation and will be lower in the real process.

Competitiveness of Formic Acid Fuel Cells: In Comparison with Methanol (포름산 연료전지의 경쟁력)

  • Uhm, Sunghyun;Seo, Minhye;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.123-127
    • /
    • 2016
  • Methanol fuel cells having advantages of relatively favorable reaction kinetics and higher energy density have attracted increasing interests as best alternative to hydrogen fuel cell because of H2 production, storage and distribution issues. While there have been extensive research works on developing key components such as electrocatalysts as well as their physicochemical properties in practical formic acid fuel cells, there have also been urgent requests for investigating which fuel sources will be more suitable for direct liquid fuel cells in future. In this mini-review, we highlight the overall interest and outlook of formic acid fuel cells in terms of electrocatalysts, fuel supply and crossover, water management, fuel cell efficiency and system integration in comparison with methanol fuel cells.

Optimization Process Models of Gas Combined Cycle CHP Using Renewable Energy Hybrid System in Industrial Complex (산업단지 내 CHP Hybrid System 최적화 모델에 관한 연구)

  • Oh, Kwang Min;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.28 no.3
    • /
    • pp.65-79
    • /
    • 2019
  • The study attempted to estimate the optimal facility capacity by combining renewable energy sources that can be connected with gas CHP in industrial complexes. In particular, we reviewed industrial complexes subject to energy use plan from 2013 to 2016. Although the regional designation was excluded, Sejong industrial complex, which has a fuel usage of 38 thousand TOE annually and a high heat density of $92.6Gcal/km^2{\cdot}h$, was selected for research. And we analyzed the optimal operation model of CHP Hybrid System linking fuel cell and photovoltaic power generation using HOMER Pro, a renewable energy hybrid system economic analysis program. In addition, in order to improve the reliability of the research by analyzing not only the heat demand but also the heat demand patterns for the dominant sectors in the thermal energy, the main supply energy source of CHP, the economic benefits were added to compare the relative benefits. As a result, the total indirect heat demand of Sejong industrial complex under construction was 378,282 Gcal per year, of which paper industry accounted for 77.7%, which is 293,754 Gcal per year. For the entire industrial complex indirect heat demand, a single CHP has an optimal capacity of 30,000 kW. In this case, CHP shares 275,707 Gcal and 72.8% of heat production, while peak load boiler PLB shares 103,240 Gcal and 27.2%. In the CHP, fuel cell, and photovoltaic combinations, the optimum capacity is 30,000 kW, 5,000 kW, and 1,980 kW, respectively. At this time, CHP shared 275,940 Gcal, 72.8%, fuel cell 12,390 Gcal, 3.3%, and PLB 90,620 Gcal, 23.9%. The CHP capacity was not reduced because an uneconomical alternative was found that required excessive operation of the PLB for insufficient heat production resulting from the CHP capacity reduction. On the other hand, in terms of indirect heat demand for the paper industry, which is the dominant industry, the optimal capacity of CHP, fuel cell, and photovoltaic combination is 25,000 kW, 5,000 kW, and 2,000 kW. The heat production was analyzed to be CHP 225,053 Gcal, 76.5%, fuel cell 11,215 Gcal, 3.8%, PLB 58,012 Gcal, 19.7%. However, the economic analysis results of the current electricity market and gas market confirm that the return on investment is impossible. However, we confirmed that the CHP Hybrid System, which combines CHP, fuel cell, and solar power, can improve management conditions of about KRW 9.3 billion annually for a single CHP system.

Development of process for energy recovery from landfill gas using LFG-Hydrate (LFG-Hydrate를 통한 매립가스 에너지화 공정 개발)

  • Moon, Donghyun;Shin, Hyungjoon;Han, Kyuwon;Lee, Jaejung;Yoon, Jiho;Lee, Gangwoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.152.2-152.2
    • /
    • 2010
  • LFG는 매립된 폐기물 중 유기성분이 혐기성조건에서 미생물에 의해 분해가 되면서 발생하며, 이러한 매립지가스는 주변 지역의 자연 및 생활환경에 악영향을 미치기 때문에 소각 등의 방법으로 LFG를 처리하고 있다. 일반적으로 매립지로부터 발생하는 가스의 량은 폐기물 1톤 당 $150{\sim}250m^3$로서 매립 후 2~3년 후에 최대량이 발생하며 매립 후 20~30년 후까지 지속적으로 발생함으로 안정적인 LFG의 공급이 가능하며, 메탄함량이 50%인 경우 약 $5,000kcal/m^3$의 높은 발열량을 가지므로 대체에너지원으로 이용할 경우 환경적인 문제 해결 및 신재생에너지원으로 활용할 수 있다. LFG 자원화 할 경우 가장 안정적인 방안으로 발전 및 중질가스로 활용하는 것이나, 발전의 경우 최소 200만톤 이상의 매립용량을 갖추어야 경제적인 사업성을 확보할 수 있으며, 중질가스로 활용하는 경우 인근에 가스 수요처를 확보해야 하는 어려움이 있다. 만약 중 소규모의 매립장에서 발생하는 LFG를 안전하고 경제적인 조건으로 저장 및 수송할 수 있다면 중 소규모의 매립지에서 발생하는 LFG도 활용할 수 있을 것으로 기대되며, 안전하고 경제적인 저장과 수송기술을 통하여 발전이 아닌 중질가스로의 활용도 가능하게 될 것이다. 또한 여러 곳의 매립장에서 발생한 LFG를 한 곳으로 집중시켜 고질가스로 전환하는 설비비용을 절감할 수 있으며, 정제된 고질가스를 이용하여 발전보다 경제적인 자동차 연료나 도시가스로 활용할 수 있을 것이다. 본 연구에서는 LFG의 저장과 수송기술 중 GTS 기술을 통하여 저장과 수송에 제약이 크고 많은 비용이 소비되는 기체 상태의 에너지원을 하이드레이트화 시킴으로서 중 소규모 매립지에서 상대적으로 적은 비용으로 가스저장과 지상수송이 가능하게 할 수 있다. 본 연구의 결과로 LFG 에너지화 실증화 플랜트를 설계/제작 하였으며, 메탄+이산화탄소+물 하이드레이트 형성 실험 결과 4.56 Mpa, 277.2 K 조건에서 3시간을 한 사이클로 하는 공정운전을 가지는 것을 확인하였다. 이때 생성된 슬러리상의 하이드레이트를 고압으로 배출하여 펠릿으로 형성시켰으며, 형성된 하이드레이트 펠릿의 경우 92.27%의 메탄을 포함하는 것을 확인하였다.

  • PDF

[ $CO_2$ ] Sequestration in Geological Structures in the Maritime Area: A Preliminary Review (이산화탄소 해저 지질 구조 격리: 기술 현황과 제도 예비검토)

  • Hong, Gi-Hoon;Park, Chan-Ho;Kim, Han-Joon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.203-212
    • /
    • 2005
  • Anthropogenic emissions of greenhouse gases, particularly carbon dioxide($CO_2$) which arises mainly as wastes from the fossil fuel burning processes, are causing global warming. The effects of global warming become increasingly felt all over the world including sea level rise and extreme weather. The more direct consequences of the elevated atmospheric $CO_2$ on the ocean is the acidification of the surface ocean which brings a far reaching adverse impact on the life at sea and probably on the whole ecosystem of the planet. Improvement in energy efficiency and use of alternative energy sources are being made to reduce $CO_2$ emissions. However, a rapid transition to alternatives seems unachievable within a few decades due to the constraints on the associated technology and socio-economic factors in the world, since fossil fuels make up approximately 85% of the world's commercial energy demands. It has now been recognized that capture and geological sequestration of $CO_2$ could significantly reduce its emissions from fossil fuel utilization and therefore provides the means to rapidly achieve large reductions in $CO_2$ emissions(excerpts from London Convention, LC/SG 28, 2005). In Korea, well-developed sedimentary basins are spread over the vast continental shelf and slope regions, whereas, the land is densely populated and limited in area. Consequently, the offshore area is preferred to the land for the sites for geological sequestration. The utilization of the offshore area, however, may be subject to international agreements including London Convention. In this paper, the recent trends in technologies and regulations for $CO_2$ capture and geological sequestration are described to encourage its applications in Korea.

  • PDF

Development of surface treatment materials for improving durability of metallic bipolar plates in PEMFC (연료전지용 금속분리판 내구성 향상을 위한 표면처리기술 개발)

  • Kim, Myong-Hwan;Goo, Young-Mo;Yoo, Seung-Eul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.41-44
    • /
    • 2008
  • 본 연구에서는 고분자 전해질 연료전지용 금속분리판의 전기화학적 부식을 방지하기 위한 금속 첨가 DLC(Diamond-like-carbon) 표면처리 방법을 개발하였으며, stainless steel 304를 모재로 하여 텅스텐 첨가 DLC, 티타늄 첨가 DLC, 몰리브덴 첨가 DLC 금속분리판을 제작하였다. 제작된 금속분리판을 이용하여 내구성 평가,전기화학적 부식 특성, 성능평가 및 접촉저항 특성 등을 평가하였다. 전기화학적 부식특성의 경우 각각의 분리판에 대해 6.69, 1.2, 1.0 ${\mu}A/cm^2$로 모재인 STS 304의 25 ${\mu}A/cm^2$의 부식전류밀도에 비해 우수한 부식특성을 보였다. 또한 초기 성능에서 몰리브덴 첨가 DLC 분리판의 경우 300 mA/$cm^2$에서 0.757 V로 측정되었으며, 이는 graphite 분리판 측정 결과인 0.758 V와 유사한 성능을 보였다. 또한 내구성 평가에서 초기 성능 대비 성능 감소율이 10% 감소하는데 소요된 시간은 graphite 분리판의 경우 2,000시간으로 나타났으며, 몰리브덴 첨가 DLC 분리판의 경우 1,700시간으로 측정되었다. 1,500시간 까지의 성능 감소율은 grphite,텅스텐 첨가DLC,티타늄 첨가DLC, 몰리브덴 첨가 DLC 분리판 순으로 각각에 대해 37.7, 60.3, 92.8, 45.7 ${\mu}V$/hr로 나타났다.

  • PDF

Recent Development of Thermo-chemical Conversion Processes with Fluidized Bed Technologies (유동층 공정을 이용한 열화학적 전환 공정의 최신 개발 동향)

  • Hyun Jun Park;Seung Seok Oh;Olusola Nafiu Olanrewaju;Jester Lih Jie Ling;Chul Seung Jeong;Han Saem Park;See Hoon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.8-18
    • /
    • 2023
  • Increasing of energy demand due to the rapid growth of global population and the development of world economy has inevitably resulted in the continuously increase of fossil fuel usage in the world. However, highly dependence on fossil fuels has necessarily brought about critical environmental issues and challenges such as severe air pollutions and rapid global warming. In order to settle these environmental and energy problems, clean energy generations in the conventional combustion processes have widely adapted in the world. In particular, novel thermochemical conversion processes such as pyrolysis and gasification have rapidly been applied for generating clean energy. Fluidized bed technologies having advantages such as various fuel use, easy continuous operation, high heat and material transfer, isothermal operation, and lower operation temperature are widely adopted and used because they are suitable for thermochemical energy conversion. The latest research trends and important findings in the thermo-chemical conversion process with fluidized bed technologies are summarized in this review. Also, the need for research such as layered materials and substances to reduce fine dust (biomass, natural resource waste, etc.) was suggested. Through this, it is intended to increase interest and understanding in fluidized bed technology and to present directions for solving future challenges in fluidized bed process technology development.

Study on Operation Condition for Gas Hydrate Product of LFG (LFG를 이용한 가스 하이드레이트 생산을 위한 운전조건 선정에 관한 연구)

  • Moon, D.H.;Shin, H.J.;Yoon, J.H.;Lee, G.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.553-553
    • /
    • 2009
  • LFG는 약 4,500kcal/$m^3$의 높은 발열량을 가지는 에너지원으로 활용이 가능한 동시에 GWP가 21인 $CH_4$를 제거함으로써 탄소배출권(CERs) 확보를 통해 CDM 또는 ET 시장에서 유리한 위치를 선점할 수 있다. LFG의 활용기술에는 발전과 중질가스 및 고질가스 형태의 연료로 생산하는 방식이 있다. 하지만 기존의 기술은 LFG의 발생량이 일정규모 이상인 매립지에서 경제성을 가지기 때문에 국내에서는 14곳의 대형 매립지에서만 에너지원으로 활용하고 있다. 그 외 중소규모 매립지에서는 대기중으로 방출하거나 소각하여 처리하므로 가용한 에너지원이 버려지고 있을 뿐만 아니라 지구온난화에 영향을 미친다. 본 연구에서는 중소규모 매립지에서 발생하는 LFG를 경제성을 가지는 에너지원으로 활용하기 위하여 하이드레이트화를 이용한 $CH_4$ 분리, 정제, 수송 연구를 진행하였으며, 이러한 연구의 일환으로 pure $CH_4$를 대상으로 하이드레이트 형성 시 구동력(driving force)에 따른 induction time, growth rate, gas consumption 측정을 통하여 LFG를 이용한 가스 하이드레이트 생산을 위한 운전조건 선정을 위한 기본 자료로 사용하고자 한다.

  • PDF