• Title/Summary/Keyword: 에너지 공간

Search Result 1,727, Processing Time 0.034 seconds

Complex Terrain and Ecological Heterogeneity (TERRECO): Evaluating Ecosystem Services in Production Versus water Quantity/quality in Mountainous Landscapes (산지복잡지형과 생태적 비균질성: 산지경관의 생산성과 수자원/수질에 관한 생태계 서비스 평가)

  • Kang, Sin-Kyu;Tenhunen, John
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.307-316
    • /
    • 2010
  • Complex terrain refers to irregular surface properties of the earth that influence gradients in climate, lateral transfer of materials, landscape distribution in soils properties, habitat selection of organisms, and via human preferences, the patterning in development of land use. Complex terrain of mountainous areas represents ca. 20% of the Earth's terrestrial surface; and such regions provide fresh water to at least half of humankind. Most major river systems originate in such terrain, and their resources are often associated with socio-economic competition and political disputes. The goals of the TERRECO-IRTG focus on building a bridge between ecosystem understanding in complex terrain and spatial assessments of ecosystem performance with respect to derived ecosystem services. More specifically, a coordinated assessment framework will be developed from landscape to regional scale applications to quantify trade-offs and will be applied to determine how shifts in climate and land use in complex terrain influence naturally derived ecosystem services. Within the scope of TERRECO, the abiotic and biotic studies of water yield and quality, production and biodiversity, soil processing of materials and trace gas emissions in complex terrain are merged. There is a need to quantitatively understand 1) the ecosystem services derived in regions of complex terrain, 2) the process regulation occurred to maintain those services, and 3) the sensitivities defining thresholds critical in stability of these systems. The TERRECO-IRTG is dedicated to joint study of ecosystems in complex terrain from landscape to regional scales. Our objectives are to reveal the spatial patterns in driving variables of essential ecosystem processes involved in ecosystem services of complex terrain region and hence, to evaluate the resulting ecosystem services, and further to provide new tools for understanding and managing such areas.

Bachelard's Theory of Imagination and the Philosophical Bases of Creativity (바슐라르의 상상력 이론과 창의력의 철학적 기초)

  • Yoo, Kyoung-Hoon
    • Journal of Gifted/Talented Education
    • /
    • v.19 no.3
    • /
    • pp.603-646
    • /
    • 2009
  • This paper explores in depth Gaston Bachelard's theory of imagination so as to establish the philosophical bases of creativity. While he had begun his studies on imagination to eliminate unreliable subjectivity hampering objectivity of philosophy of science, he was fascinated to become a philosopher of imagination by its unlimited power. Since his theory of imagination marked a prominent spot in the history of Western idea, this paper will seek its significant implications that will also shed light on the philosophical grounds of creativity. The best way to approach his theory is to differentiate whether imagination is the power of forming images or that of transforming them. If not misguided by surface simplicity of the aforementioned differentiation, it will be revealed that it has accrued strata in the history of Western idea. The power of forming images is related to theory of mimesis or of representation, and to ocularcentric and logo-centric structures. Bachelard strongly opposes to the theory of imagination as power of forming images, since, if it is so, its expansion and development are not possible. He thereby constructs the theory of imagination as power of transforming images. The force of movement lies at the core of his theory. Imagination as an ability to intuit movement is directly related to the problem of change in the history of Western idea. If an entity is incessantly changes itself, it becomes a crucial role of imagination to capture the force perse in the perpetual movement without distortedly and abruptly fixing it at a still point of time and space. Bachelard criticizes such a method that makes movement a controllable entity consisting of partitioned moments of space; instead, he constructs theory of imagination that reveals the true power of indispensable movement. Furthermore, it will be revealed that Bachelard's theory has more affinities with Kantian imagination and reflective judgement of aesthetics than the past researches on Bachelard showed. This paper, by means of the above investigation, will transcend the superficiality of defining what are Bachelard's formal, material, and dynamic imaginations; simultaneously, it will bear philosophical conditions of possibility that makes us experience imagination fully. These conditions also become the philosophical foundations of creativity. It will draw to a provisional close its imaginative journey of everlasting movement by making ontological and ethical dimensions of imagination and creativity.

Lessons from Cross-Scale Studies of Water and Carbon Cycles in the Gwangneung Forest Catchment in a Complex Landscape of Monsoon Korea (몬순기후와 복잡지형의 특성을 갖는 광릉 산림유역의 물과 탄소순환에 대한 교차규모 연구로부터의 교훈)

  • Lee, Dong-Ho;Kim, Joon;Kim, Su-Jin;Moon, Sang-Ki;Lee, Jae-Seok;Lim, Jong-Hwan;Son, Yow-Han;Kang, Sin-Kyu;Kim, Sang-Hyun;Kim, Kyong-Ha;Woo, Nam-Chil;Lee, Bu-Yong;Kim, Sung
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.2
    • /
    • pp.149-160
    • /
    • 2007
  • KoFlux Gwangneung Supersite comprises complex topography and diverse vegetation types (and structures), which necessitate complementary multi-disciplinary measurements to understand energy and matter exchange. Here, we report the results of this ongoing research with special focuses on carbon/water budgets in Gwangneung forest, implications of inter-dependency between water and carbon cycles, and the importance of hydrology in carbon cycling under monsoon climate. Comprehensive biometric and chamber measurements indicated the mean annual net ecosystem productivity (NEP) of this forest to be ${\sim}2.6\;t\;C\;ha^{-1}y^{-1}$. In conjunction with the tower flux measurement, the preliminary carbon budget suggests the Gwangneung forest to be an important sink for atmospheric $CO_2$. The catchment scale water budget indicated that $30\sim40%$ of annual precipitation was apportioned to evapotranspiration (ET). The growing season average of the water use efficiency (WUE), determined from leaf carbon isotope ratios of representative tree species, was about $12{\mu}mol\;CO_2/mmol\;H_2O$ with noticeable seasonal variations. Such information on ET and WUE can be used to constrain the catchment scale carbon uptake. Inter-annual variations in tree ring growth and soil respiration rates correlated with the magnitude and the pattern of precipitation during the growing season, which requires further investigation of the effect of a monsoon climate on the catchment carbon cycle. Additionally, we examine whether structural and functional units exist in this catchment by characterizing the spatial heterogeneity of the study site, which will provide the linkage between different spatial and temporal scale measurements.

PHYSIOANATOMY OF NASOPHARYNGEAL SPACE AND HYPERNASALITY IN CLEFT PALATE (구개열에서 비인두강의 생리해부학적 구조와 과비음과의 연관성 연구)

  • Cho, Joon-Hui;Pyo, Wha-Young;Choi, Hong-Shik;Choi, Byung-Jai;Son, Heung-Kyu;Sim, Hyun-Sub
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.721-728
    • /
    • 2004
  • Velopharyngeal closure is a sphincter mechanism between the activities of the soft palate, lateral pharyngeal wall and the posterior pharyngeal wall, which divides the oral and nasal cavity. It participates in physiological activities such as swallowing, breathing and speech. It is called a velopharyngeal dysfunction when this mechanism malfunctions. The causes of this dysfunction are defects in (1) length, function, posture of the soft palate, (2) depth and width of the nasopharynx and (3) activity of the posterior and lateral pharyngeal wall. The purposes of this study are to analyze the nasopharynx of cleft palate patients using cephalometry and to evaluate the degree of hypernasality using nasometry to find its relationship with velopharyngeal dysfunction. The following results were obtained : 1. In cephalometry, there were significant differences in soft palate length, soft palate thickness, nasopharyngeal depth, nasopharyngeal area, and adequate ratio between two groups. 2. In nasometry, there were significant differences between two groups in vowel /o/ and sentences including oral consonants. 3. In cleft palate patients, though no general correlation was found between Anatomic VPI and nasalance scores, vowel /i/ and sentences including oral consonants were slightly correlated. In conclusion, cephalometry and nasometer results were significantly different between the two groups. Though in the cleft palate group, Anatomic VPI and nasalance scores, which are indices for velopharyngeal closure, excluding the vowel /i/ and sentences including oral consonants show generally no significance.

  • PDF

Study of the ENC reduction for mobile platform (모바일 플랫폼을 위한 전자해도 소형화 연구)

  • 심우성;박재민;서상현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.181-186
    • /
    • 2003
  • The satellite navigation system is widely used for identifying a user's position regardless of weather or geographic conditions and also make effect on new technology of marine LBS(Location Based Service), which has the technology of geographic information such as the ENC. Generally, there are conceivable systems of marine LBS such as ECDIS, or ECS that use the ENC itself with powerful processor in installed type on ships bridge. Since the ENC is relatively heavy structure with dummy format for data transfer between different systems, we should reduce the ENC to small and compact size in order to use it in mobile platform. In this paper, we assumed that the mobile system like PDA, or Webpad can be used for small capability of mobile platform. However, the ENC should be updated periodically by update profile data produced by HO. If we would reduce the ENC without a consideration of update, we could not get newly updated data furthermore. As summary, we studied considerations for ENC reduction with update capability. It will make the ENC be useful in many mobile platforms for various applications.

  • PDF

Atmospheric Aerosol Monitoring Over Northeast Asia During 2001 from MODIS and TOMS data (MODIS와 TOMS자료를 이용한 2001년 동북아시아 지역의 대기 에어로졸 모니터링)

  • 이권호;홍천상;김영준
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.2
    • /
    • pp.77-89
    • /
    • 2004
  • The spatial and temporal variations of aerosol optical depth (AOD) over Northeast Asia regions have special importance in the aerosol research for estimation of aerosol radiative forcing parameters and climate change. Aerosol optical and physical properties (AOD and ${\AA}$ngstrom parameter) have been investigated by using Moderate Resolution Imaging Spectroradiometer (MODIS) and Total Ozone Mapping Spectrometer (TOMS) Aerosol Index (AI) to estimate aerosol characteristics over the study region during 2001. Additionally, aerosol characteristics over the Korean peninsular during Aerosol Characteristic Experiment in Asia (ACE-Asia) Intensive Observation Period (IOP) have been investigated by using satellite observations. The results showed that the daily-observed aerosol data indicate seasonal variations with relatively higher aerosol loading in the spring and very low during the winter. The typical Asian dust case showed higher AOD (>0.7) with lower Angstrom exponent (<0.5) and higher AI (>0.5) that is mainly due to the composition of coarse particles in the springtime. Mean AOD for 2001 at 4 different places showed 0.65$\pm$0.37 at Beijing, 0.31$\pm$0.19 at Gosan, 0.54$\pm$0.26 at Seoul, and 0.38$\pm$0.19 at Kwangju, respectively. An interesting result was found in the present study that polluted aerosol events with small size dominated-aerosol loading around the Korean peninsular are sometimes observed. The origin of these polluted aerosols was thought to East China. Aerosol distribution from satellite images and trajectory results shows the proof of aerosol transport. Therefore, aerosol monitoring using satellite data is very useful.

A study on Yang Shi Tai Chi Chuan in Bartenieff Fundamentals Perspectives (바티니에프 기본원리를 통해 본 양식 태극권에 관한 연구)

  • Wang, Zhiquan
    • Trans-
    • /
    • v.8
    • /
    • pp.95-127
    • /
    • 2020
  • This research is based on using Bartenieff Fundamentals to analyze the fundamentals of Tai Chi Chuan's movements in order to develop the methods of relaxation from Tai Chi Chuan's principle movement movements It also shows that the two techniques have commonalities in many ways. First of all, taking a philosophical approach on the body movements of Tai Chi Chuan and Bartenieff, for both methods the ultimate goal is the integration of mind and body. In other words, there is a thread of connection between the East's body and mind monism and the west's Body Awareness. Secondly, looking at it from a Breath Support standpoint as used in the Bartenieff method, the two methods both use the breathing to naturally move the body and relax the body. In Tai Chi Chuan the Breath is the basis of life and the strength of the Body. So the breathing of Tai Chi chuan is what makes body and mind communicate, harmonize and integrate. In other words, Breathing in Tai Chi is realized through mental fusion and affects the movements. This is the same as the Breath Support of Bartenieff. It is said that in every aspect the Breath Support of Bartenieff influences the movement and changes both the inner and outer form of the body. Thirdly, looking at the Core Support used in the Bartenieff method, both methods emphasize core. At the same time of moving and being conscious of one's core, the usage of muscles can be deeper rather than superficial and this enables strong and flexible movement. In Tai Chi Chuan abdominal muscles used when one coughs are consciously engaged through abdominal breathing and so strength is collected in the core. When one exercises like that the core becomes more stable and breathing becomes more smooth. Fourthly, analyzing the Rotary Factor used in the Bartenieff Fundamentals, they both use rotary movement to reach the goal of physical relaxation. The rotation factor of Bartenieff allows movement to be easier and more free because of the characteristic of joint exercise where the center axis moved in three dimensions, this is the same in Tai Chi chuan. According to Tai Chi chuan's circle and Spiral Movements, it can achieve the relaxation through switching into a seamless flow and access space as much as possible. Finally, when looking at Developmental Patterning through Bonnie Bainbridge Cohen's Body-Mind Centering Work theory, presented from Bartenieff developmental model are similar with the developmental process of Tai Chi chuan Breath, Core-Distal Connectivity/Navel Radiation, Head-Tail Connectivity/Spinal Movement, Upper-Lower Connectivity/Homologous, Body-Half Connectivity/Homo-Lateral Connectivity, Cross-Lateral Connectivity/Contra-Lateral Connectivity. They are all similar. In other words, in Tai Chi Chuan energy is gathered in the core through breathing, upper and lower body are connected through the spine, not only homo-laterally but also cross-laterally. Through this study the expression of the dance movements can be more natural. Additionally based on the Body Awareness balance usage of the central axis, joints and body can develop the relax technique.

  • PDF

Evaluation of Oil Spill Detection Models by Oil Spill Distribution Characteristics and CNN Architectures Using Sentinel-1 SAR data (Sentienl-1 SAR 영상을 활용한 유류 분포특성과 CNN 구조에 따른 유류오염 탐지모델 성능 평가)

  • Park, Soyeon;Ahn, Myoung-Hwan;Li, Chenglei;Kim, Junwoo;Jeon, Hyungyun;Kim, Duk-jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1475-1490
    • /
    • 2021
  • Detecting oil spill area using statistical characteristics of SAR images has limitations in that classification algorithm is complicated and is greatly affected by outliers. To overcome these limitations, studies using neural networks to classify oil spills are recently investigated. However, the studies to evaluate whether the performance of model shows a consistent detection performance for various oil spill cases were insufficient. Therefore, in this study, two CNNs (Convolutional Neural Networks) with basic structures(Simple CNN and U-net) were used to discover whether there is a difference in detection performance according to the structure of CNN and distribution characteristics of oil spill. As a result, through the method proposed in this study, the Simple CNN with contracting path only detected oil spill with an F1 score of 86.24% and U-net, which has both contracting and expansive path showed an F1 score of 91.44%. Both models successfully detected oil spills, but detection performance of the U-net was higher than Simple CNN. Additionally, in order to compare the accuracy of models according to various oil spill cases, the cases were classified into four different categories according to the spatial distribution characteristics of the oil spill (presence of land near the oil spill area) and the clarity of border between oil and seawater. The Simple CNN had F1 score values of 85.71%, 87.43%, 86.50%, and 85.86% for each category, showing the maximum difference of 1.71%. In the case of U-net, the values for each category were 89.77%, 92.27%, 92.59%, and 92.66%, with the maximum difference of 2.90%. Such results indicate that neither model showed significant differences in detection performance by the characteristics of oil spill distribution. However, the difference in detection tendency was caused by the difference in the model structure and the oil spill distribution characteristics. In all four oil spill categories, the Simple CNN showed a tendency to overestimate the oil spill area and the U-net showed a tendency to underestimate it. These tendencies were emphasized when the border between oil and seawater was unclear.

Development of a deep neural network model to estimate solar radiation using temperature and precipitation (온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발)

  • Kang, DaeGyoon;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.85-96
    • /
    • 2019
  • Solar radiation is an important variable for estimation of energy balance and water cycle in natural and agricultural ecosystems. A deep neural network (DNN) model has been developed in order to estimate the daily global solar radiation. Temperature and precipitation, which would have wider availability from weather stations than other variables such as sunshine duration, were used as inputs to the DNN model. Five-fold cross-validation was applied to train and test the DNN models. Meteorological data at 15 weather stations were collected for a long term period, e.g., > 30 years in Korea. The DNN model obtained from the cross-validation had relatively small value of RMSE ($3.75MJ\;m^{-2}\;d^{-1}$) for estimates of the daily solar radiation at the weather station in Suwon. The DNN model explained about 68% of variation in observed solar radiation at the Suwon weather station. It was found that the measurements of solar radiation in 1985 and 1998 were considerably low for a small period of time compared with sunshine duration. This suggested that assessment of the quality for the observation data for solar radiation would be needed in further studies. When data for those years were excluded from the data analysis, the DNN model had slightly greater degree of agreement statistics. For example, the values of $R^2$ and RMSE were 0.72 and $3.55MJ\;m^{-2}\;d^{-1}$, respectively. Our results indicate that a DNN would be useful for the development a solar radiation estimation model using temperature and precipitation, which are usually available for downscaled scenario data for future climate conditions. Thus, such a DNN model would be useful for the impact assessment of climate change on crop production where solar radiation is used as a required input variable to a crop model.

Water-absorption characteristics and cooked rice texture of milled rice (쌀 수침 중 벼 품종별 수분흡수 특성 및 취반미 물성)

  • Choi, Induck;Oh, You-Geun;Kwak, Jieun;Chun, Areum;Kim, Mi-Jung;Hyun, WoongJo
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.486-494
    • /
    • 2021
  • A rice (Oryza sativa L.) cultivar of the SPP (stakeholder participatory program) and ordinary rice were characterized based on water-absorption properties and cooked rice texture. During rice soaking, the rice grain transformed from transparent to opaque (white), indicating that water molecules diffused into the rice grain during soaking. In addition, cracks in the internal structure of soaked rice gradually increased with an increase in soaking time. Water absorption increased rapidly up to 20 min, but no increment was observed after 30 min of soaking. At this point, the entire areas of the soaked rice grain turned white, indicating that water absorption had reached saturation. SPP rice showed lower hardness and higher stickiness in its cooked form than ordinary rice, suggesting that SPP rice could be a more preferable choice than ordinary rice. Furthermore, cooked SPP rice was more edible in terms of hardness and stickiness after being kept warm for 12 h than ordinary rice. These results indicated that cooked SPP rice exhibited slow retrogradation and improved taste.