• Title/Summary/Keyword: 에너지 공간

Search Result 1,727, Processing Time 0.026 seconds

Correlation Analysis of Cutter Acting Force and Temperature During the Linear Cutting Test Accompanied by Infrared Thermography (선형절삭시험과 적외선 열화상 측정을 통한 픽커터 작용력과 발생 온도의 상관관계 분석)

  • Soo-Ho Chang;Tae-Ho Kang;Chulho Lee;Hoyoung Jeong;Soon-Wook Choi
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.519-533
    • /
    • 2023
  • In this study, the linear cutting tests of pick cutters were carried out on a granitic rock with the average compressive strength over 100 MPa. From the tests, the correlation between the cutter acting force and the temperature measured by infrared thermal imaging camera during rock cutting was analyzed. In every experimental condition, the maximum temperature was measured at the rock surface where the chipping occurred, and the temperature generated in the rock was closely correlated with the cutter acting force. On the other hand, the temperature of a pick cutter increased up to only 36℃ above the ambient temperature, and the correlation with the cutter force was not obvious. This can be attributed to the short cutting distance under laboratory conditions and the high thermal conductivity of the tungsten carbide inserts. However, the relatively high temperature of the tungsten carbide inserts was found to be maintained. Therefore, it is recommended that a reinforcement between the insert and the head of a pick cutter or the quality improvement of silvering brazing in the production of a cutter is necessary to maintain the high cutting performance of a pick cutter.

Comparative study of laminar and turbulent models for three-dimensional simulation of dam-break flow interacting with multiarray block obstacles (다층 블록 장애물과 상호작용하는 3차원 댐붕괴흐름 모의를 위한 층류 및 난류 모델 비교 연구)

  • Chrysanti, Asrini;Song, Yangheon;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1059-1069
    • /
    • 2023
  • Dam-break flow occurs when an elevated dam suddenly collapses, resulting in the catastrophic release of rapid and uncontrolled impounded water. This study compares laminar and turbulent closure models for simulating three-dimensional dam-break flows using OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) model, specifically the k-ε model, is employed to capture turbulent dissipation. Two scenarios are evaluated based on a laboratory experiment and a modified multi-layered block obstacle scenario. Both models effectively represent dam-break flows, with the turbulent closure model reducing oscillations. However, excessive dissipation in turbulent models can underestimate water surface profiles. Improving numerical schemes and grid resolution enhances flow recreation, particularly near structures and during turbulence. Model stability is more significantly influenced by numerical schemes and grid refinement than the use of turbulence closure. The k-ε model's reliance on time-averaging processes poses challenges in representing dam-break profiles with pronounced discontinuities and unsteadiness. While simulating turbulence models requires extensive computational efforts, the performance improvement compared to laminar models is marginal. To achieve better representation, more advanced turbulence models like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are recommended, necessitating small spatial and time scales. This research provides insights into the applicability of different modeling approaches for simulating dam-break flows, emphasizing the importance of accurate representation near structures and during turbulence.

Analysis of the effect of improving human thermal environment by road directions and street tree planting patterns in summer (여름철 도로 방향과 가로수 식재 방식에 의한 인간 열환경 개선효과 분석)

  • Jeonghyeon Moon;Yuri Choi;Eunja Choi;Jueun Yang;Sookuk Park
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.1-18
    • /
    • 2024
  • This study aimed to identify the optimal street tree planting method to improve the summer thermal environment in Seoul, Republic of Korea. The effects of road direction and street tree planting patterns on urban thermal environments using ENVI-met simulations were analyzed. The 68 scenarios were analyzed based on four road directions and 17 planting patterns. The results showed that tree planting had a reducing air temperature, mean radiant temperature, human thermal sensation (PET and UTCI). The most effective planting pattern among all scenarios was low tree height (6m), wide crown width (9m), high leaf area index (3.0), and narrow planting interval (8m). The largest improvement in the thermal environment was the northern sidewalk of the east-west road. Since this study used computer simulations, the difference from real urban spaces should be considered, and further research is needed through field measurement and consideration of more variables.

An Experimental Study to Predict the Concentration of Moving Tire and Road Wear Particles from Road to Ocean Environment (도로에서 해양 환경까지 이동하는 타이어 마모입자의 농도를 예측하기 위한 실험적 연구)

  • Tae-Woo Kang;Won-Hyun Ji
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.196-205
    • /
    • 2024
  • In this study, sample collection and quantification analysis of Tire and Road Wear Particles (TRWP) from the road surface were conducted to predict the amount of TRWP generated on the road surface moving by environmental compartment depending on rainfall intensity. Samples were collected from TRWP remaining on the road surface two days after the 3 days average rainfall (0-60 mm/day) occurred and the road surface was completely dry. Only TRWP were separated from the collected samples through size and density separation, and the difference in the content of TRWP remaining on the road surface after rainfall was based on the value of 60.2 g o f TRWP o n a day witho ut rain (0 mm/day). By calculating, it was co nfirmed that 0-49.4 g o f TRWP can mo ve to the environmental compartment depending on the intensity of rainfall. In addition, it was confirmed that when the rainfall intensity was 60 mm/day, the amount of TRWP moving to each environmental section was 3.75 times higher compared to 5 mm/day, and using the results of previous research, the total amount of TRWP that can be transported to the environmental compartment by rainfall from the domestic road environment annually is 9,592 tons, and 288 tons of this can be affected by marine microplastics. However, this study has limitations in terms of limited space and predicted results, but it would like to mention the need to improve the domestic road environment and sewage treatment system to reduce TRWP. In the future, we plan to conduct sample collection and concentration analysis studies of TRWP in real environmental compartments to verify the results of this study.

Examining Diurnal Thermal Variations by Urban Built Environment Type with ECOSTRESS Land Surface Temperature Data: Evidence from Seoul, Korea (도시 건조환경 유형에 따른 서울시 주간 지표면 온도 변동성 분석: ECOSTRESS 데이터의 활용)

  • Gyuwon Jeon;Yujin Park
    • Journal of the Korean Regional Science Association
    • /
    • v.40 no.2
    • /
    • pp.107-130
    • /
    • 2024
  • Urban land surface temperature (LST) change is a major environmental factor that affects the thermal comfort, energy consumption, and health of urban residents. Most studies that explored the relationship between LST and urban built-environment form analyzed only midday LST. This study explores the diurnal variation of summertime LST in Seoul using ECOSTRESS data, which observes LST at various times of the day and analyzes whether the LST variation differs by built environment type. Launched in 2018, ECOSTRESS operates in a non-sun-synchronous orbit, observing LST with a high resolution of 70 meters. This study collected data from early morning (6:25) to evening (17:26) from 2019 to 2022 to build time-series LST. Based on greenery, water bodies, and building form data, eight types of Seoul's built environment were derived by hierarchical clustering, and the LST fluctuation characteristics of each cluster were compared. The results showed that the spatial disparity in LST increased after dawn, peaked at noon, and decreased again, highlighting areas with rapid versus stable LST changes. Low-rise and high-rise compact districts experienced fast, high temperature increases and high variability, while low-density apartments experienced moderate LST increases and low variability. These results suggest urban forms that can mitigate rapid daytime heating.

Preliminary Study on Candidate Host Rocks for Deep Geological Disposal of HLW Based on Deep Geological Characteristics (국내 심부 지질특성 연구를 통한 고준위방사성폐기물 심층처분 후보 암종 선행연구)

  • Dae-Sung Cheon;Kwangmin Jin;Joong Ho Synn;You Hong Kihm;Seokwon Jeon
    • Tunnel and Underground Space
    • /
    • v.34 no.1
    • /
    • pp.28-53
    • /
    • 2024
  • In general, high-level radioactive waste (HLW) generated as a result of nuclear power generation should be disposed within the country. Determination of the disposal site and host rock for HLW deep geological repository is an important issue not only scientifically but also politically, economically, and socially. Considered host rock types worldwide for geological disposal include crystalline rocks, sedimentary rocks, volcanic rocks, and salt dome. However, South Korea consists of various rock types except salt dome. This paper not only analyzed the geological and rock mechanical characteristics on a nationwide scale with the preliminary results on various rock type studies for the disposal host rock, but also reviewed the characteristics and possibility of various rock types as a host rock through deep drilling surveys. Based on the nationwide screening for host rock types resulted from literature review, rock distributions, and detailed case studies, Jurassic granites and Cretaceous sedimentary rocks (Jinju and Jindong formations) were derived as a possible candidate host rock types for the geological disposal. However, since the analyzed data for candidate rock types from this study is not enough, it is suggested that the disposal rock type should be carefully determined from additional and detailed analysis on disposal depth, regional characteristics, multidisciplinary investigations, etc.

A Study on Hydraulic Characteristics of Permeable Rock Fractures in Deep Rock Aquifer Using Geothermal Gradient and Pumping Test Data (지온경사와 양수시험 자료를 활용한 심부 암반대수층 투수성 암반균열의 수리특성 연구)

  • Hangbok Lee;Cholwoo Lee;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.312-329
    • /
    • 2024
  • In various underground research projects such as energy storage and development and radioactive waste disposal targeting deep underground, the characteristics of permeable rock fractures that serve as major pathway of groundwater flow in deep rock aquifer are considered as an important evaluation factor in the design, construction, and operation of research facilities. In Korea, there is little research and database on the location and hydraulic characteristics of permeable rock fractures and the pattern of groundwater flow patterns that may occur between fractures in deep rock boreholes. In this paper, the hydraulic characteristics of permeable rock fractures in deep rock aquifer were evaluated through the analysis of geothermal gradient and pumping test data. First, the deep geothermal distribution was identified through temperature logging, and the geothermal gradient was obtained through linear regression analysis using temperature data by depth. In addition, the hydraulic characteristics of the fractured rock were analyzed using outflow temperature obtained from pumping tests. Ultimately, the potential location and hydraulic characteristics of permeable rock fractures, as well as groundwater flow within the boreholes, were evaluated by integrating and analyzing the geophysical logging and hydraulic testing data. The process and results of the evaluation of deep permeable rock fractures proposed in this study are expected to serve as foundational data for the successful implementation of underground research projects targeting deep rock aquifers.

Listeners' Selection Criteria and Behaviors Related to Music Listening (음악감상 시 감상자의 선곡기준 및 행동)

  • So Ri Woo;Lu Lin Xu
    • Journal of Naturopathy
    • /
    • v.13 no.1
    • /
    • pp.32-41
    • /
    • 2024
  • Background: With the advancement of various technologies and media, we have entered an era of music appreciation that transcends physical spaces and devices. Following these changes, research is needed to understand how listeners select and different parameters regarding their listening behaviors. Objective: This study aims to investigate the listening behaviors of listeners and the criteria for music selection. Method: A survey was conducted with 112 adults aged 18 and older to examine listening behaviors and selection criteria during music listening. The survey consisted of 29 items including multiple-choice and open-ended questions. Results: It was found that listeners regularly listen to newly updated music as they have more access to them via various streaming platforms. In terms of listening situations, the majority listened to music while commuting (35%) or exercising (29%), both define as energy-consuming activities. All music elements including rhythm/tempo(28%), melody(26%), timber(25%) and lyric(20%) were considered with similar proportion for music selection. In terms of music elements. Furthermore, three categories of non-musical factors influencing music selection were identified, which are relational, cultural, and emotional. Relational(41%) and cultural(41%) factors showed to have highest impact respectively. Conclusion: The results of this study provide basic data regarding music listening behaviors and what they consider when selecting music.

Field Applicability of Coated Conical Pickcutters through Cutter Force and Wear Damage Analysis (보강된 픽커터의 커터작용력과 마모손상분석을 통한 현장적용성 검토)

  • Soon-Wook Choi;Soo-Ho Chang;Chulho Lee;Tae-Ho Kang;Hoyoung Jeong
    • Tunnel and Underground Space
    • /
    • v.34 no.5
    • /
    • pp.554-570
    • /
    • 2024
  • In this study, a field test was conducted to determine the effect of reinforcement around the insert on the wear damage of the pickcutter. Prior to the field test, a linear cutting test was conducted on the reinforced pickcutter and unreinforced pickcutter to determine the effect of the pickcutter reinforcement on the cutter force, and the capacity of the roadheader was checked based on the results. The cutter force analysis showed that the average normal force and cutting force were similar regardless of the reinforcement, but the maximum normal force and cutting force showed a large standard deviation depending on the reinforcement. From the torque review, it was determined that a depth of penetration of 6 mm or less using the average cutting force and 4 mm or less using the maximum cutting force was appropriate. In the wear damage analysis, the number of used pickcutters, the number of pickcutters with inserts retained, the number of cases of uneven wear, and the difference in weight between before and after use showed that the reinforced pickcutters outperformed the unreinforced pickers by 16% to 28%. From these results, we can conclude that pickcutter reinforcement has a significant impact on the durability of the pickcutter. However, the cost of reinforcing pickcutters is higher than that of unreinforced pickcutters due to material costs and additional processes, so it is necessary to consider the effect of performance improvement and cost.

Spatially-resolved Photoluminescence Studies on Intermixing Effect of InGaAs Quantum Dot Structures Formed by AlAs Wet Oxidation and Thermal Annealing (AlAs 습식산화와 열처리로 인한 InGaAs 양자점 레이저 구조의 Intermixing효과에 관한 공간 분해 광학적 특성)

  • Hwang J.S.;Kwon B.J.;Kwack H.S.;Choi J.W.;Choi Y.H.;Cho N.K.;Cheon H.S.;Cho W.C.;Song J.D.;Choi W.J.;Lee J.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2006
  • Optical characteristics of InGaAs quantum dot (QD) laser structures with an Al native oxide (AlOx) layer as a current-blocking layer were studied by means of photoluminescence (PL), PL excitation, and spatially-resolved micro-PL techniques. The InGaAs QD samples were first grown by molecular-beam epitaxy (MBE), and then prepared by wet oxidation and thermal annealing techniques. For the InGaAs QD structures treated by the wet oxidation and thermal annealing processes, a broad PL emission due to the intermixing effect of the AlOx layer was observed at PL emission energy higher than that of the non-intermixed region. We observed a dominant InGaAs QD emission at about 1.1 eV in the non-oxide AlAs region, while InGaAs QD-related emissions at about 1.16 eV and $1.18{\sim}1.20eV$ were observed for the AlOx and the SiNx regions, respectively. We conclude that the intermixing effect of the InGaAs QD region under an AlOx layer is stronger than that of the InGaAs QD region under a non-oxided AlAs layer.