• 제목/요약/키워드: 에너지 공간

Search Result 1,727, Processing Time 0.025 seconds

A study on Integrating Strategy of Low-carbon Urban Planning System (탄소저감 도시계획 시스템의 통합화 방안 도출 연구)

  • Park, Chan Ho;Kim, Bum Seok
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.99-106
    • /
    • 2013
  • Through the rapid economic growth, modern society have achieved the industrialization but needed to respond to climate change and low-carbon green growth on a scale of urban area. Many studies about the low-carbon city and the green city are on going, but most of them are not integrated but go along in each area(construction, transportation, energy, etc) In this paper, we surveyed the current status of researches about information system to design low-carbon city or green city, and define the method to integrate the outcomes from the each area. As a result integrated model of 'Low-carbon Urban Planning integrated System' in the paper, Individual system is developed by way of C/S form because web system raised problems for data load in analysis. The integrated system was decided to develop by way of Web form, and integrated system was developed by can use the analysed DB in the individual system. We expect this study can help future researches to develop more economical and efficient integrated information system model to design the low-carbon city and the green city.

Synchrotron Radiation Imaging of Breast Tissue Using a Phase-contrast Hard X-ray Microscope (경 엑스선 위상차 현미경을 이용한 유방 조직의 방사광 영상)

  • Jeong, Young-Ju;Bong, Jin-Gu;Park, Sung-Hwan
    • Progress in Medical Physics
    • /
    • v.22 no.3
    • /
    • pp.117-123
    • /
    • 2011
  • Synchrotron radiation (SR) imaging enables us to observe internal structures of biologic samples without staining. In this study, we obtained X-ray microscopic images of human breast tissues with 11.1 KeV hard X-ray microscope of the Pohang light source and used zone plates and phase-contrast technique to get high resolution X-ray images. Hard X-ray microscopic images of fibrocystic change and breast cancer tissues with a spatial resolution of 60 nm were obtained and from these images, we could observe the micro-structures of human breast tissue. Also we analyzed and compared these images, which revealed distinct features of each condition. In conclusion, SR imaging with phase-contrast hard X-ray microscope for medical application, especially in breast disease can give some useful information for clinical research.

Variability of Wind Energy in Korea Using Regional Climate Model Ensemble Projection (지역 기후 앙상블 예측을 활용한 한반도 풍력 에너지의 시·공간적 변동성 연구)

  • Kim, Yumi;Kim, Yeon-Hee;Kim, Nayun;Lim, Yoon-Jin;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.373-386
    • /
    • 2016
  • The future variability of Wind Energy Density (WED) over the Korean Peninsula under RCP climate change scenario is projected using ensemble analysis. As for the projection of the future WED, changes between the historical period (1981~2005) and the future projection (2021~2050) are examined by analyzing annual and seasonal mean, and Coefficient of Variation (CV) of WED. The annual mean of WED in the future is expected to decrease compared to the past ones in RCP 4.5 and RCP 8.5 respectively. However, the CV is expected to increase in RCP 8.5. WEDs in spring and summer are expected to increase in both scenarios RCP 4.5 and RCP 8.5. In particular, it is predicted that the variation of CV for WED in winter is larger than other seasons. The time series of WED for three major wind farms in Korea exhibit a decrease trend over the future period (2021~2050) in Gochang for autumn, in Daegwanryeong for spring, and in Jeju for autumn. Through analyses of the relationship between changes in wind energy and pressure gradients, the fact that changes in pressure gradients would affect changes in WED is identified. Our results can be used as a background data for devising a plan to develop and operate wind farm over the Korean Peninsula.

Photovoltaic Generation System Control Using Space Vector PWM Method (공간벡터 PWM 방식을 이용한 태양광 발전 시스템 제어)

  • Cho, Moon-Taek;Choi, Hae-Gill;Lee, Chung-Sik;Baek, Jong-Mu
    • Journal of the Korean Society of Radiology
    • /
    • v.4 no.3
    • /
    • pp.31-37
    • /
    • 2010
  • In this paper, a photovoltaic system is designed with PWM(Pulse Width Modulation) voltage source inverter. Proposed synchronous signal and control signal was processed by 56F8323 microprocessor for stable modulation. The PWM voltage source inverter using inverter consists of complex type of electric power converter to compensate for the defect, that is solar cell cannot be developed continuously by connecting with the source of electric power for ordinary use. It can cause the effect of saving electric power, from 10 to 20[%]. The PWM voltage source inverter operates in situation that its output voltage is in same phase with the utility voltage. In addition, I connected extra power to the system through operation the system voltage and inverter power in a synchronized way by extracting the system voltage so that the phase of the system and PWM voltage inverter can be synchronized. In the system of this research showed good results after being controlled in order to provide stable power to the load and the system through maintaining and low output power of harmonics.

An Experimental Study on Performance of Energy Recovery Ventilation System (폐열회수 환기시스템의 성능에 관한 실험적 연구)

  • Kim, Young-Soo;Choi, Kwan-Soo;Kim, Il-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.445-450
    • /
    • 2012
  • At the limited space, the air conditioning may have difficult to control temperature or humidity for home use. Nowdays, the people reponse to temperature or humidity sensitively. This becomes the Indoor Air Quality (IAQ) is an important factor for comfortably. Heat recovery ventilator (HRV) is used for the solution of inconsistency between IAQ and power-saving. Also, the thermoelectric element is applied to HRV and compared with temperature efficiency and verifying the capacity of the system. To improve the temperature efficiency a single motor and thermoelectric element with the conductive guide vane is experimented. The results shows that it can save 23 W by using the single motor. The developed system of 250 CMH capacities with the thermoelectric element reveals the temperature efficiency improvement of 4.01% in cooling period and 2.98% in heating period compared to the conventional system.

Study of Energy Management Strategy Considering Various Working Modes of Plug-in Hybrid Electric Tractor (플러그인 하이브리드 전기 트랙터에서 다양한 작업환경을 고려한 주행전략에 대한 연구)

  • Kang, Hyungmook;Jung, Daebong;Kim, Minjae;Min, Kyoungdoug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.181-186
    • /
    • 2013
  • In recent years, eco-friendliness and high fuel economy have become important issues for commercial tractors. Electric tractors are often required for operation in a greenhouse. However, the battery capacity limits the available operation time. To overcome this problem, a plug-in hybrid electric tractor is considered a reasonable alternative. This tractor has a basic driving ability and can operate in various working modes such as mower, rotary, loader, and trailing. This study focuses on the energy management strategy by considering various working modes.

A Numerical Study of Smoke Movement with Radiation in Atrium Fires (아트리움에서 화재 발생시 복사가 고려된 연기거동에 대한 수치해석 연구)

  • 정진용;유홍선;홍기배
    • Fire Science and Engineering
    • /
    • v.15 no.1
    • /
    • pp.7-15
    • /
    • 2001
  • This paper describes the smoke filling process of a fire field model based on a self-developed SMEP (Smoke Movement Estimating Program) codo to the simulation of fire induced flows in the atrium space (SIVANS atrium at Japan) containing smoke radiation effect. The SMEP using PISO algorithm solves conservation equations for mass, momentum, energy and species, together with those for the modified k-$\varepsilon$ turbulence model with buoyancy term. Also it solves the radiation equation using the discrete ordinates method. The result of the calculated smoke temperature containing radiation effect has shown a better prediction than the result calculated by only convection effect in comparison with the experimental data. This seems to come from the radiation effect of $H_2$O and $CO_2$ gas under smoke productions. Thus, the consideration of the radiation effect under smoke in fire should be necessary in order to get more realistic result. Also the numerical results indicated that the smoke layer is developing at a rate of about 0.1 m/s. It would take about 450 seconds after starting the ultra fast fire of 560 kW that the smoke layer move down to 1.5m above the escape level.

  • PDF

An Effective addressing assignment method and Its Routing Algorithm in Smart Grid Environments (스마트그리드 환경에서 효율적인 주소 할당 방법과 라우팅 알고리즘)

  • Im, Song-Bin;Kim, Hwa-Sung;Oh, Young-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.89-98
    • /
    • 2012
  • In this paper, we proposed the efficient addressing scheme for improving the performance of routing algorithm by using ZigBee in Smart Grid environment. In a 16-bit address space and the network size of a few thousands, it is very unlikely to suffer from frequent address collisions. In response, we propose an elegant (x, y, z) coordinate axes addressing scheme from divided address space of 16 bit and its routing algorithm. One of disadvantages of (x, y) coordinate axes addressing, however, is that any router may not hold as many children as proposed, since sensor nodes tend to be connected to a geographically nearby router. We also present an adaptive routing algorithm for location-aware routing algorithms, using our addressing scheme. As a result, each node was reduced not only bitwise but also multi hop using the coordinate axes while routing and the effective address assignment and routing is to minimize the average energy consumption of each node in the network.

A Study on the Standardized Finite Element Models for Carbody Structures of Railway Vehicle Made of Sandwich Composites (샌드위치 복합재 적용 철도차량 차체 구조물의 표준유한요소모델 제시 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Ko, Hee-Young;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.382-388
    • /
    • 2010
  • This paper describes the standardized finite element model for carbody structures of railway vehicle made of sandwich composites. Recently, sandwich composites were widely used to railway vehicle due to the improvement of energy efficiency, high specific stiffness and strength, weight reduction and space saving in korea. Therefore, structural integrity should be verified using finite element analysis prior to the manufacture of composite railway vehicle. The standardized finite element model for composite carbody structures was introduced through comparing the results of real structural test under vertical, compressive, twisting load and natural frequency test of various railway vehicles in this study. The results show that the quadratic shell element is suitable to model the reinforced metal frame used to improve the flexural stiffness of sandwich panel compared to beam element, and layered shell and solid element are recommended to model the skin and honeycomb core of sandwich panel compared to sandwich shell element. Also, the proposed standard finite element model has the merit of being applied to crashworthiness problem without modifications of finite element model.

Analysis for the Crack Characteristics of Rock and Concrete using Strain and Elastic Wave (변형률과 탄성파를 이용한 암석 및 콘크리트 균열특성분석)

  • Choi, Young Chul;Kim, Jin Seop;Park, Tae Jin;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.27 no.5
    • /
    • pp.253-262
    • /
    • 2017
  • The purpose of this paper is to analyze the crack characteristics by performing the compression test of the rock and concrete specimens. The experiments are carried out by using strain sensors which can measure length change and the AE sensor which can detect the elastic wave from the crack. The crack volumetric strain calculated from measured strain is shown in different shape on the rock and the concrete specimens. This is because the specimens have a different degree of brittleness. However, the crack volumetric strain associated with the fracture and damage was similar to accumulated AE energy of the two specimens. This means that the AE sensor can assess damage in real time without damaging the structure.