• Title/Summary/Keyword: 에너지회수

Search Result 881, Processing Time 0.024 seconds

Indole Crystallization in Coal Tar Absorption Oil using Methanol Solvent Extraction (메탄올 용매추출을 이용한 콜타르 흡수유 중의 인돌 결정화)

  • Ryu, Heeyong;Lee, Sangheon;Shin, Sungsoon
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.166-172
    • /
    • 2022
  • A method of efficiently purifying high value-added indole among components of coal tar absorption oil was studied using a step-by-step process of extraction-distillation-crystallization. The coal tar absorption oil used in this study contains 1.2% naphthalene, 0.1% quinoline, 0.4% isoquinoline, 6.4% indole, 21.0% 1-methylnaphthalene, 48.8% 2-methylnaphthalene, and 11.7% biphenyl as main components. For the separation and purification of indole, methanol was first used as a solvent to separate indole species in the coal tar absorption oil into an extract phase. And then methanol was recovered by distillation. Subsequently, an extraction solution where methanol was removed was mixed with normal hexane, and then crystallized to recover indole having a purity of 99.3%. Based on the experiments of this study, a purification process scheme for indole in coal tar absorption oil was proposed.

Heat.Power Control System of Cogeneration using LabVIEW (LabVIEW를 이용한 열병합 발전의 열.전기 제어 시스템)

  • Lee, Song-Keun;Kim, Il-Ju;Lee, Kyu-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.8
    • /
    • pp.93-98
    • /
    • 2009
  • Cogeneration means the highly energy-efficient generation system that improves energy ratio by generating electricity and heat, and it really affects the improvement of overall efficiency by using industrial process, district heating, and hot-water supply etc. after the energy produced through supplying power to system collects. This thesis indicates the screen of cogeneration flow in LabVIEW and the heat power control system that can be in long-distance control of a district energy system using TCP/IP. We simulated on four computers so that the heat power control system proves long-distance control possible.

Status and Prospect of Free Electron Lasers (자유전자레이저의 개발현황과 전망)

  • Lee, Byung-Cheol;Jeong, Young-Ug;Park, Seong-Hee;Hahn, Sang-June
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.5
    • /
    • pp.435-450
    • /
    • 2006
  • Free electron lasers (FELs) are promising sources of coherent radiation that can provide users with radiations having a wide-range frequency-tunability and good spectral characteristics for basic science and industrial applications. Especially in Terahertz or X-ray ranges of spectrum, FELs can generate much stronger radiations than conventional light sources. In this paper, we introduce the working principles and key technologies of FELs, the status and the prospects of FEL developments.

Reaction Characteristics of WGS Catalyst with Fraction of Catalyst in a Batch Type Fluidized Bed Reactor (회분식 유동층 반응기에서 촉매함량 변화에 따른 WGS 촉매의 반응특성)

  • Ryu, Ho-Jung;Hyun, Ju-Soo;Kim, Ha-Na;Hwang, Taek-Sung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.465-473
    • /
    • 2011
  • To find the optimum mixing ratio of WGS catalyst with $CO_2$ absorbent for SEWGS process, water gas shift reaction tests were carried out in a fluidized bed reactor using commercial WGS catalyst and sand (as a substitute for $CO_2$ absorbent). WGS catalyst content, gas velocity, and steam/CO ratio were considered as experimental variables. CO conversion increased as the catalyst content increased during water gas shift reaction. Variations of the CO conversion with the catalyst content were small at low gas velocity. However, those variations increased at higher gas velocity. Within experimental range of this study, the optimum operating condition(steam/CO ratio=3, gas velocity = 0.03 m/s, catalyst content=10 wt.%) to get high CO conversion and $CO_2$ capture efficiency was confirmed. Moreover, long time water gas shift reaction tests up to 20 hours were carried out for two cases (catalyst content = 10 and 20 wt.%) and we could conclude that the WGS reactivity at those conditions was maintained up to 20 hours.

Thermodynamic Energy Balance Analysis of Underground Lined Rock Caverns (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동의 열역학적 에너지수지 분석)

  • Kim, Hyung-Mok;Park, Do-Hyun;Ryu, Dong-Woo;Choi, Byung-Hee;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.297-306
    • /
    • 2011
  • In this paper, we performed thermodynamic energy balance analysis of the underground lined rock cavern for compressed air energy storage (CAES) using the results of multi-phase heat flow analysis to simulate complex groundwater-compressed air flow around the cavern as well as heat transfer to concrete linings and surrounding rock mass. Our energy balance analysis demonstrated that the energy loss for a daily compression and decompression cycle predominantly depends on the energy loss by heat conduction to the concrete linings and surrounding rock mass for a sufficiently air-tight system with low permeability of the concrete linings. Overall energy efficiency of the underground lined rock caverns for CAES was sensitive to air injection temperature, and the energy loss by heat conduction can be minimized by keeping the air injection temperature closer to the ambient temperature of the surroundings. In such a case, almost all the heat loss during compression phase was gained back in a subsequent decompression phase. Meanwhile, the influence of heat conductivity of the concrete linings to energy efficiency was negligible.

The Energy Performance & Economy Efficiency Evaluation of Microturbine Installed in Hospital buildings (대형병원에서 마이크로터빈 이용한 열병합시스템 에너지성능 및 경제성 분석)

  • Kim, Byung-Soo;Gil, Young-Wok;Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.176-183
    • /
    • 2009
  • Distributed generation(DG) of combined cooling, heat, and power(CCHP)has been gaining momentum in recent year as efficient, secure alternative for meeting increasing energy demands. This paper presents the energy performance of microturbine CCHP system equipped with an absorption chiller by modelling it in hospital building. The orders of study were as following. 1)The list and schedule of energy consumption equipment in hospital were examined such as heating and cooling machine, light etc. 2) Annual report of energy usage and monitoring data were examined as heating, cooling, DHW, lighting, etc. 3) The weather data in 2007 was used for simulation and was arranged by meteorological office data in Daejeon. 4) Reference simulation model was built by comparison of real energy consumption and simulation result by TRNSYS and ESP-r. The energy consumption pattern of building were analyzed by simulation model and energy reduction rate were calculated over the cogeneration. As a result of this study, power generation efficiency of turbine was about 30[%] after installing micro gas turbine and lighting energy as well as total electricity consumption can be reduced by 40[%]. If electricity energy and waste heat in turbine are used, 56[%] of heating energy and 67[%] of cooling energy can be reduced respectively, and total system efficiency can be increased up to 70[%].

Economic Evaluation of ATES Heat Pump System (ATES 열펌프 시스템의 경제성 평가)

  • Kim, Namtae;Choi, Jong Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.199-199
    • /
    • 2011
  • ATES(Aquifer Thermal Energy Storage) 열펌프 시스템은 기존의 다양한 열원 적용 시스템 대비 효율이 우수한 것으로 알려져 유럽과 미국에서 건물 냉난방 시스템으로 적용되고 있다. 특히, ATES 시스템은 기존의 냉난방 시스템 대비 경제성이 우수한 것으로 알려져 있으나 국내에서는 이에 대한 연구 결과는 전무한 실정이다. 본 연구에서는 ATES 열펌프 시스템의 실증 성능 결과를 분석하였으며, LNG 보일러와 에어컨을 사용하는 기존의 냉난방 시스템을 비교시스템으로 ATES 열펌프 시스템의 경제성 평가를 수행하였다. ATES 시스템의 연간 실증 성능 실험결과 ATES 시스템은 외기온도와 무관하게 연중 안정적인 성능을 나타내었다. 경제성 평가시에 생애주기법(Life Cycle Cost)을 적용하여 ATES 열펌프 시스템의 설치 및 운전에 필요한 총 소요비용을 산정하고, 이 결과를 바탕으로 투자회수기간법을 통해 ATES 시스템의 투자회수 기간을 산정하였다. 생애주기법 적용 시에 현재가치법을 사용하였으며, 현재가치법은 수명주기에 발생하는 모든 투자비용과 절감액을 일정한 시점을 기준으로 등가환산하는 방법을 의미한다. 현재가치법에 사용되는 현재가치는 초기비용과 현재가치계수의 곱으로 나타나는데, 여기에서 현재가치계수는 임의의 이자율로 일정기간 동안 정기적인 할부금액이 적립될 때의 현재금액을 구하기 위해 사용하는 계수를 의미한다. 전기와 LNG는 각각 2009년 7월의 (주)한국전력공사와 (주)한국가스공사의 고시요금을 적용하였다. 본 시스템은 실증 설비용량인 20RT를 대상 건물로 가정하였고, 초기투자비는 크게 공사비와 냉난방 설비 구입비로 구성되어 있으며, 기본적인 물가지표는 (사)한국물가정보(KPI)의 고시 데이터를 참조하였다. 각 시스템의 초기투자비는 ATES 시스템이 비교대상 기존 냉난방 시스템 대비 5.7배 높게 나타났다. 일일 8시간 사용기준으로 계절별 전력요금을 고려한 연간운전 비용은 ATES 시스템이 기존 시스템 대비 냉난방 시에 각각 77%와 16%를 나타내어 운전비용이 연간 절감되었고, 난방 운전 시 절감 비율이 냉방시보다 크게 나타났다. 두 시스템에 대한 생애주기비용을 산정하기 위하여 에어컨과 보일러의 기존시스템과 ATES 시스템의 가용연수를 모두 20년으로 설정하였고, 유지보수 비용은 초기투자비용의 2%로 설정하고, 할인율은 은행 예금이자를 기준으로 5%로 설정하였다. 전기와 LNG의 요금 상승률은 (사)한국물가정보를 바탕으로 각각 2%와 8%로 가정하였다. 이러한 조건에서 생애주기법을 이용한 경제성평가는 ATES 시스템의 경우 생애운전비용이 초기투자비용보다 작게 나타났으며, 기존 냉난방 시스템은 생애운전비용이 초기투자비용에 비하여 높게 나타났다. 본 연구 대상 ATES 열펌프 시스템의 실증 성능 데이터와 기존 문헌으로부터 얻은 냉난방 시스템의 성능 결과를 이용하여 생애주기 비용을 적용한 결과 ATES 시스템의 기존 시스템 대비 투자회수 기간은 6.62년으로 나타났다. 특히, 본 연구에서는 ATES 시스템이 국내 최초로 적용됨에 따라 스크린 등의 부품을 다소 고가의 제품으로 시스템에 적용하였으므로 ATES 시스템의 신뢰성과 안정성이 확보되면 초기 투자비 감소가 가능할 것으로 예상되며, 기존 시스템 대비 투자회수 기간은 더욱 감소될 수 있을 것으로 예상된다.

  • PDF

A Study on the Characteristics of Lift Fluctuation Power Spectral Density on a Fin Tube in the Heat Recovery Steam Generator (배열회수 보일러 단일 휜튜브의 양력 변동 PSD 특성 연구)

  • Ha, Ji Soo;Lee, Boo Youn;Shim, Sung Hun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.211-216
    • /
    • 2015
  • Heat exchanger tube array in a heat recovery steam generator is exposed to the hot exhaust gas flow and it could cause the flow induced vibration, which could damage the heat exchanger tube array. It is needed for the structural safe operation of the heat exchanger to establish the characteristics of flow induced vibration in the tube array. The researches for the flow induced vibration of typical heat exchangers have been conducted by using single cicular tube or circular tube array and the nondimensional PSD(Power Spectral Density) function with the Strouhal number, fD/U, had been derived by experimental method. From the present study, the basis for the application of flow induced vibration to the heat recovery steam generator tube array would be prepared. For the previous mentioned purpose, the present CFD analysis introduced a single fin tube and calculated with the unsteady laminar flow over the single fin tube. The characteristics of vortex shedding and lift fluctuation over the fin tube was investigated. The derived nondimensional PSD was compared with the results of the previous experimental researches and the characteristics of lift PSD over a single fin tube was established from the present CFD study.

Optimization of biomethane production by biogas upgrading process using response surface mothodolgy (반응표면분석을 이용한 바이오가스 고질화공정을 통한 바이오메탄)

  • Park, Seong-Bum;Sung, Hyun-Je;Shim, Dong-Min;Kim, Nack-Joo
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.62-73
    • /
    • 2014
  • This research was focused to apply response surface methodology for optimization of bio-methane production by biogas upgrading process. Methane concentration(Y1) and methane efficiency(Y2) on biogas upgrading process were mathematically described as being modeled by the use of the Box-Behnken design on response surface methodology. The results of ANOVA(analysis of variance) about models, the probability value of the methane concentration and methane recovery response surface model are 0.0001 and 0.0001, respectively and coefficient of determination($R^2$) are 0.9788 and 0.9710, respectively. The response surface model is proved of high reliability and suitability. The operation pressure had the greatest influence to methane concentration than other operation parameters and the PSA rotary valve velocity had the greatest influence to methane recovery than other operation parameters. Optimal condition of biogas upgrading process for production of $100Nm^3/hr$ bio-methane were operation pressure 8.0bar and outlet flow rate 31.55RPM, respectively. At that operation condition the methane concentration of bio-methane was 97.13% and methane recovery in biogas upgrading process was 75.89%.

A Study on the Optimal Management Option of the Disposal of Resources Found in Standard Plastic Garbage Bags (종량제봉투 내 폐자원에 대한 최적 처리방안 연구)

  • Park, Sang Jun;Kim, Eui Yong
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.44-54
    • /
    • 2014
  • A standard plastic garbage bag which was discarded from Incheon Metropolitan City was composed of 4.5% recyclable resources (aluminum cans 0.2%, steel cans 2.5%, glass 1.8%), 92.5% resources with recoverable energy (papers 23.0%, plastics 15.5%, combustible etc. 54.0%) and 3.0% non-combustible etc. Recycling is more effective than landfilling for aluminum cans, steel cans, and glass. The energy recovery process using solid refuse fuel (SRF) is more effective than incineration for papers and plastics. Incineration is more effective than recycling for combustible etc. 2,068,948 Million Btu of total energy savings and 21,008 $MTCO_2E$ of total GHG reductions were obtained by the application of the proposed scheme. The total energy savings were equivalent to an economic benefit of 422 billion won per year. The total GHG reductions were equivalent to a GHG benefit of 4,119 passenger cars not running per year. The lower calorific value of the combustible materials was obtained to be 1,936 kcal/kg of papers, 5,079 kcal/kg of plastics and 2,462 kcal/kg of combustible other resources, respectively. If papers and plastics are properly mixed, the mixture can be used as SRF. The lower calorific value of combustible other resources does not meet the quality criteria for refuse derived fuel, therefore its components are inappropriate to used as solid refuse fuel.