• Title/Summary/Keyword: 에너지회수

Search Result 881, Processing Time 0.03 seconds

A Study on Economic Evaluation and Energy Efficiency for the Installation of Water Control Device in Building (급수제어장치 설치에 따른 건축물의 에너지 효율 및 경제성 평가)

  • Park, Kang-Hyun;Cha, Jung-Hoon;Kim, Su-Min
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.338-341
    • /
    • 2011
  • Water usage for cleaning the toilet bowl accounts for 27% of the total water usage. Water-saving valve that can select the amount of water for cleaning toilet bowl can be reduced expenditure. After installing water-saving valve, analysed the economic effects. Water-saving valves compared with flush valves, and researched the amount of water usage. Then analyzed fort he economic effects. Water-saving valve was used 5.6 ${\ell}/time$ for cleaning toilet bowl. In contrast, flush valve was consumed 8.4 ${\ell}/time$. Water-saving valve's water-saving rate was 33.3%. The initial payback period for Water-saving valve was 459.5 days. By a small investment in water saving valve, the economic benefits can be obtained.

  • PDF

Design of Drawing Conformity Inspection System Based on Vision Recognition (열전발전을 활용한 에너지절감형 LED 조명 설계)

  • Kim, Myeong-Ho;Jeon, Jae-Hwan;Oh, Am-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.854-855
    • /
    • 2013
  • 최근 국내 전력공급 문제에 따라 다양한 에너지절감형 기술과 제품이 연구되고 있다. 특히 국내 기준 전체 전력 소비량의 약 20%를 차지하는 조명분야에서는 기존 조명을 대체할 친환경, 고효율 LED 조명에 대한 기술이 대두되고 있다. LED 조명은 원리의 특성상 광효율과 비례하여 LED 접합부 온도가 상승하며 이는 광효율과 수명을 저하시킨다. 이에 다양한 방열기술이 LED 조명기술의 핵심이라 할 수 있다. 본 논문에서는 LED 모듈 접합부의 발열을 열전소자를 활용하여 열전발전 함으로써 에너지를 절감하고, 열회수를 통한 방열효과를 제공 하는 LED 조명을 제안한다.

  • PDF

Development of a Novel Inverter Circuit for Motoring and Generating Operation in SRM Reluctance Machine (SRM 전동 및 발전동작을 위한 새로운 인버터의 개발)

  • Park, Han-Woong;Park, Sung-Jun;Won, Tae-Hyun;Jung, Kee-Hwa;Kim, Cheul-U;Hwang, Young-Noon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.182-184
    • /
    • 1999
  • 회수에너지를 저장한 콘덴서전압을 이용하여 평활전류 구동방식에서 SRM이 전동기 영역으로 동작할 경우에는 콘덴서에 저장된 에너지 모두를 전동기영역에서 소모할 수 있으나, 발전모드가 장시간 유지되면 콘덴서의 에너지는 더 이상 저장할 수 없는 상태가 되는 치명적인 약점을 갖고 있다. 따라서 본 연구에서는 전동기 영역 및 발전기영역에서 평활전류 모드로 동작할 수 있는 인버터회로를 제안하고, 발전에너지를 효과적으로 사용할 수 있는 스위칭 방식을 돌출하였다.

  • PDF

Microwave-assisted extraction of paclitaxel from plant cell cultures (Microwave를 이용한 식물세포배양으로부터 paclitaxel 추출)

  • Hyun, Jung-Eun;Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.281-284
    • /
    • 2008
  • A simple and efficient microwave-assisted extraction procedure was developed and optimized for the extraction of paclitaxel from the plant cell cultures of Taxus chinensis. The biomass, immersed in a methanol-water mixture, was irradiated with microwaves in a closed-vessel system. The microwave-assisted extraction was compared with the existing conventional solvent extraction in terms of yield, extraction time, and solvent consumption. The use of microwave energy allows rapid recovery of paclitaxel from biomass and dramatically reduces extraction time and solvent usage compared to conventional solvent extraction. The paclitaxel was completely extracted from biomass by microwave-assisted extraction for 3 min at $50^{\circ}C$, for 6 min at $30^{\circ}C$ and $40^{\circ}C$, respectively.

Change in Engine Exhaust Characteristics Due to Automotive Waste Heat Recovery (엔진 배기 폐열회수로 인한 배기 특성 변화)

  • Kim, Kibum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4723-4728
    • /
    • 2014
  • In this study, a thermoelectric module (TEM) and a diesel engine were modeled using 1-D commercial software AMESim, and the performance of the TEM was evaluated when the engine was operated under the NEDC driving cycle. The goal of TEM modeling was to investigate not only the waste heat recovery (WHR) rate and energy converting efficiency, but also the heat transfer rate by taking the materials characteristics into account. In addition, a diesel oxidation catalyst (DOC) was designed, and it was found that the waste heat recovery with TEM affects the activation of DOC and alters engine exhaust composition. The simulation indicated that the WHR using TEM is beneficial for decreasing the fuel consumption of vehicles, but the reduction in the exhaust temperature affects the activation of DOC, resulting in an approximately 14% increase in CO and HC emissions. Therefore, the effect of waste heat recovery on the automotive emission characteristics must be considered in the development of automotive engine WHR systems.

Characteristics of $SF_6$ Gas Recycling Processes ($SF_6$가스 회수 공정들의 특성 연구)

  • Cho, Hoon;Woo, Dae-Sik;Choi, Yu-Mi;Han, Myung-Wan
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.329-335
    • /
    • 2011
  • $SF_6$ gas is well known as a global warming gas. Global warming potential of $SF_6$ gas is 22,000 times higher than that of $CO_2$. Recycling of $SF_6$ gas is an essential technology for the sake of the environment and the economy. The recovery processes of $SF_6$ gas studied in this work were liquefaction, distillation, and crystallization processes because these processes were thought to be easily carried to the fields for recycling waste $SF_6$ gas. The processes were simulated and optimized using Aspen plus. The optimization problems were formulated to minimize energy consumption with satisfying product specification and desired recovery. The performance of the processes was compared based on the optimization results. Effects of major process variables on the recovery performance were investigated and optimal operation guide for changing product specification and product recovery was provided.

Design and Analysis for Hydrogen Liquefaction Process Using LNG Cold Energy (LNG냉열이용 수소액화 공정해석 및 설계)

  • Yun, Sang-Kook
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • For the hydrogen liquefaction, the large amount of energy is consumed, because precooling, liquefaction and ortho/para conversion heats should be eliminated. In this paper the basic design and thermal analysis are carried out to reduce the energy consumption by using LNG cold energy for precooling process in hydrogen liquefaction processes. The LNG cold energy utilization for hydrogen precooling enables not only to get energy saving for liquefaction, but to recover the wasted cold energy to sea water at the LNG terminal. The results show that the energy saving rate for liquefaction using LNG cold energy is almost 75% of current industrial hydrogen liquefaction plant. The demand flow-rate of LNG is only 15T/D for 1T/D hydrogen liquefaction.

Monitoring-Based Building Energy Commissioning Technology (모니터링 기반 건물 에너지 커미셔닝 기술)

  • Lee, Sang-hak
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.765-767
    • /
    • 2016
  • Building Energy commissioning is a process in which verifying and making the document during entire lifetime including planning, design, construction, test run of equipment, and maintenance to minimize the operational problems of building energy efficiency. The general commissioning is replacing the equipment or reconstructing the skin to achieve the performance for the design. This process is expensive and has the disadvantage of taking a long payback period by one operation. In this paper, we studied the monitoring-based commissioning (MBCx) to increase the energy efficiency of buildings through analyzing energy use data. MBCx is modeling a building energy, comparing the real energy use with it, detecting the cause of falling the efficiency, and running the optimal operation regularly.

A Review of Enhanced Oil Recovery Technology with CCS and Field Cases (CCS와 연계한 석유회수증진 기술 동향 및 현장사례 분석)

  • Park Hyeri;Hochang Jang
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.59-71
    • /
    • 2023
  • Carbon capture, and storage (CCS) is important for the reduction of greenhouse gases and achieving carbon neutrality. CCS focuses on storing captured CO2 permanently in underground reservoirs. CO2-enhanced oil recovery (CO2-EOR) is one form of CCS, where CO2 is injected into the underground to enhance oil recovery. CO2-EOR not only aids in the extraction of residual oil but also contributes to carbon neutrality by storing CO2 underground continuously. CO2-EOR can be classified into miscible and immiscible methods, with the CO2-water alternating gas (CO2-WAG) technique being a representative approach within the miscible method. In CO2-WAG, water and CO2 are alternately injected into the reservoir, enabling oil production and CO2 storage. The WAG method allows for controlling the breakthrough of injection fluids, providing advantages in oil recovery. It also induces hysteresis in relative permeability during the injection and production process, expanding the amount of trapped CO2. In this study, the effects of enhancing oil recovery and storing CO2 underground during CO2-EOR were presented. Additionally, cases of CO2-EOR application in relation to CCS were introduced.

Improvement of Energy Efficiency in Wood Frame House with Energy Efficient Methods (건물 에너지 절약요소 적용을 통한 목조주택의 에너지 성능 개선)

  • Kim, Sejong;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • This research was carried out to evaluate and raise the energy efficiency of wood frame house. The commercial solution program CE3 (Construction Energy Efficiency Evaluation) was used for simulating the energy consumption in the single-family wood frame house. The results showed that the annual heating energy demand of the house was 160 kWh per 1 $m^2$ floor area. In order to decrease the heating energy demand, the following energy efficiency methods were applied to the simulation : a) simplification of building shape, b) decrease of windows area, c) application of high performance windows (with low thermal transmittance) and d) application of heat recovery ventilator. In case of replacement of the windows with high performance one with thermal transmittance 1 $W/m^2{\cdot}K$, the lowest heating demand of 80 $kWh/m^2{\cdot}a$ was obtained. The best combination of methods, application of high performance windows and heat recovery ventilator, showed heating energy demand 34.5 $kWh/m^2{\cdot}a$.