• Title/Summary/Keyword: 에너지하베스팅

Search Result 279, Processing Time 0.024 seconds

Energy Conversion System Using Vehicle-Induced Flow For Road Environmental Monitoring (도로 환경 모니터링을 위한 차량 유도풍 에너지 변환 시스템)

  • Lee, Jae-yun;Min, Chul-ki;Han, Eui-seok;Han, Sang-ju;Oh, Jae-geun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.550-553
    • /
    • 2009
  • 도로 환경 모니터링을 위한 센서 노드의 전력원으로 유도풍을 이용한 압전에너지 하베스팅 기술은 기존 재생 에너지의 설치 및 작동 조건에 영향을 받지 않고, 도로상에 주오염원인 자동차에서 발생되는 폐에너지를 활용하는 친환경적 에너지 순환시스템을 구현하는 핵심 요소이다. 차량 유도풍에 의해 발생되는 풍압으로 도로 상의 구조물에 진동을 유발한다. 이 때 발생한 진동 에너지는 압전체를 통해 전기 에너지로 변환, 저장할 수 있다. 이렇게 저장된 에너지는 센서의 구동과 무선 데이터 송수신을 위한 센서 노드의 전력원으로 사용함으로써 별도의 전력원이 필요없게 된다. 본 연구에서는 60km/h로 주행하는 한 대의 차량에 의해 2.7m/s의 유도풍이 발생하여 0.6g로 도로 상의 구조물에 에너지를 전달하게 된다. 전달된 에너지가 압전체를 통해 15uJ 전기에너지로 저장된다.

  • PDF

Development of P.P.T CanSat System Applying Energy Harvesting System (에너지 하베스팅 시스템을 적용한 자가발전 P.P.T CanSat 시스템 개발)

  • Chae, Bong-Geon;Kim, Su-Hyeon;Kim, Hye-In;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.315-323
    • /
    • 2018
  • CanSat has being attracted considerable attentions for the use as training purposes owing to its advantage that can implement overall system functions of typical commercial satellites within a small package like a beverage can. So-called P.P.T CanSat (Power Plant Trio Can Satellite), proposed in this study, is the name of a CanSat project which have participated in 2015 domestic CanSat competition. Its main objective is to self-power on a LED and a MEMS sensor module by using electrical energy harvested from solar, wind and piezo energy harvesting systems. This study describes the system design results, payload level function tests, flight test results and lessons learned from the flight tests.

Power Allocation and Splitting Algorithm with Low-complexity for SWIPT in Energy Harvesting Networks (에너지 하베스팅 네트워크에서 SWIPT를 위한 저복잡도를 갖는 파워 할당 및 분할 알고리즘)

  • Lee, Kisong;Ko, JeongGil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.5
    • /
    • pp.917-922
    • /
    • 2016
  • Recently, energy harvesting, in which energy is collected from RF signals, has been regarded as a promising technology to improve the lifetime of sensors by alleviating the lack of power supply problem. In this paper, we try to propose an efficient algorithm for simultaneous wireless information and power transfer. At first, we find the lower bound of water-level using the probability density function of channel, and derive the solution of power allocation in energy harvesting networks. In addition, we derive an efficient power splitting method for satisfying the minimum required harvested energy constraint. The simulation results confirm that the proposed scheme improves the average data rate while guaranteeing the minimum required harvested energy constraint, compared with the conventional scheme. In addition, the proposed algorithm can reduce the computational complexity remarkably with insignificant performance degradation less than 10%, compared to the optimal solution.

Power Allocation and Splitting Algorithm for SWIPT in Energy Harvesting Networks with Channel Estimation Error (채널 추정 오차가 존재하는 에너지 하베스팅 네트워크에서 SWIPT를 위한 파워 할당 및 분할 알고리즘)

  • Lee, Kisong;Ko, JeongGil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1277-1282
    • /
    • 2016
  • In the next generation wireless communication systems, an energy harvesting from radio frequency signals is considered as a method to solve the lack of power supply problem for sensors. In this paper, we try to propose an efficient algorithm for simultaneous wireless information and power transfer in energy harvesting networks with channel estimation error. At first, we find an optimal channel training interval using one-dimensional exhaustive search, and estimate a channel using MMSE channel estimator. Based on the estimated channel, we propose a power allocation and splitting algorithm for maximizing the data rate while guaranteeing the minimum required harvested energy constraint, The simulation results confirm that the proposed algorithm has an insignificant performance degradation less than 10%, compared with the optimal scheme which assumes a perfect channel estimation, but it can improve the data rate by more than 20%, compared to the conventional scheme.

Micro-scale Solar Energy Harvesting System with a New MPPT control (새로운 MPPT 제어기능을 갖는 마이크로 빛에너지 하베스팅 회로)

  • Yoon, Eun-Jung;Yoon, Il-Young;Choi, Sun-Myung;Park, Youn-Soo;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2627-2635
    • /
    • 2013
  • In this paper micro-scale solar energy harvesting system with a new MPPT control are proposed. In conventional solar energy harvesting systems, continuous perturbation techniques of the clock frequency or duty cycle of a power converter have been used to implement MPPT(Maximum Power Point Tracking) control. In this paper, we propose a new MPPT technique to control the duty cycle of a power switch powering a power converter. The proposed circuit is designed in $0.35{\mu}m$ CMOS process, and the designed chip area including pads is $770{\mu}m{\times}800{\mu}m$.

A fully UHF-powered smart sensor tag in food freshness monitoring (음식물 신선도 모니터링을 위한 풀 패시브 UHF 스마트 센서 태그)

  • Lam, Binh Minh;Chung, Wan-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.3
    • /
    • pp.89-96
    • /
    • 2018
  • This study aims to develop a fully passive smart sensing tag utilizing RF (Radio Frequency) energy harvesting technology at UHF (Ultra High Frequency) band of 915MHz. To optimize the power collected under various radiated conditions, an efficient energy harvesting module exploiting a boost circuit with maximum power point tracking (MPPT) is employed. Specifically, the proposed tag features two orthogonal antennas to enhance its capability of both energy scavenging and data transmissions. The experimental result shows that the developed smart sensor tag can scavenge an RF input power of as low as 0.19mW at a distance of 4 meters for a 3.6Vdc output. Furthermore, the proposed smart sensor tag performs the feasibility of completely autonomous monitoring food freshness at 2 meters with a low-power sensor array.

Development of Hybrid Energy Harvesting Block and Evaluation on Power Generation Performance (하이브리드 에너지하베스팅 블록 개발 및 발전성능 평가)

  • Kim, Hyo-Jin;Park, Ji-Young;Jin, Kyu-Nam;Noh, Myung-Hyun
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.99-106
    • /
    • 2014
  • The purpose of this study is to develop hybrid energy blocks with piezoelectric and electromagnetic induction method. The developed energy block is able to be applied to the housing and facilities in the city and is suitable to adjust the characteristics of facilities. To develop the hybrid energy block, we analyzed the characteristics and requirements of various energy block types and drew improvement and application method to develop energy blocks. We compared and analyzed the characteristics and performance of the prototype energy blocks and the developed hybrid energy blocks. According to result of the comparison and analysis, the developed energy block shows higher performance of 12.7 times for adding one vibration and 28.9 times for five consecutive vibrations than that of a existing prototype energy block. This is consistent with research purposes for W-level electrical energy production. Thus, the new energy block will likely be possible to apply to the housing and urban facility.

Design of a Full-Wave Rectifier with Vibration Detector for Energy Harvesting Applications (에너지 하베스팅 응용을 위한 진동 감지기가 있는 전파정류 회로 설계)

  • Ka, Hak-Jin;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.421-424
    • /
    • 2017
  • This paper describes a full-wave rectifiers for energy harvesting circuit using vibration detector. The designed circuit operates only when the vibration is detected through the vibration detector and the active diode. When there is no vibration, the comparator is turned off to prevent leakage of energy stored in the $C_{STO}$. The energy stored in the capacitor is used to drive the level converter and the active diode. The energy stored in the capacitor is supplied to an active diode designed as an output power. The vibration detector is implemented with Schmitt Trigger and Peak Detector with Hysteresis function. The proposed circuit is designed in a CMOS 0.35um technology and its functionality has been verified through extensive simulations. The designed chip occupies $590{\mu}m{\times}583{\mu}m$.

  • PDF

Design of a Thermal Energy Harvesting Circuit with MPPT Control (MPPT 제어 기능을 갖는 열에너지 하베스팅 회로 설계)

  • Yoon, Eun-Jung;Kim, Su-Jin;Park, Kum-Young;Oh, Won-Seok;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.11
    • /
    • pp.2487-2494
    • /
    • 2012
  • In this paper, a thermal energy harvesting circuit with MPPT control is designed. MPPT(Maximum Power Point Tracking) control function is implemented using the linear relationship between the open-circuit voltage of a thermoelectric generator(TEG) and its MPP voltage. The designed MPPT control circuit traces the maximum power point by periodically sampling the open circuit voltage of a TEG, makes the reference voltages using sampled voltage and delivers the maximum available power to load. Simulation results show that the maximum power efficiency of the designed circuit is 94%. The proposed thermal energy harvesting circuit is designed with $0.35{\mu}m$ CMOS process, and the chip area except PAD is $1168.7{\mu}m{\times}541.3{\mu}m$.

Design of an Energy Harvesting Full-Wave Rectifier Using High-Performance Comparator (고성능 비교기를 이용한 에너지 하베스팅 전파정류회로 설계)

  • Lee, Dong-Jun;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.429-432
    • /
    • 2017
  • In this paper, a full - wave rectifying harvesting circuit with a high-performance comparator is designed. Designed circuits are divided into Negative Voltage Converter and Active Diode stages. The comparator included in the active diode stage is implemented as a 3-stage type and divided into pre-amplification, decision circuit, and output buffer stages. The main purpose of this comparator is to reduce the propagation delay and improve the voltage and power efficiency of the harvesting circuit. The proposed circuit is designed with magna $0.35{\mu}m$ CMOS process and its operation is verified by simulation. The chip area of the designed energy harvesting circuit is $900{\mu}m{\times}712{\mu}m$.

  • PDF