• Title/Summary/Keyword: 에너지저장 스프링

Search Result 4, Processing Time 0.018 seconds

회전 핀에 의한 이동 하중에 따른 보의 대변형 수치 해석

  • 정일섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.65-65
    • /
    • 2004
  • 스프링은 변위에 상응하는 에너지를 저장하는 기계 요소로서 다양한 분야에 적용되고 있으며, 나선형(helical) 스프링, 와선형(spiral) 스프링, 비틀림 막대, 디스크(disk) 스프링, 판(plate) 스프링, 일정 하중(constant force) 스프링 둥 다양한 종류가 있다. 근래 많이 사용되는 LCD 모니터 가운데 일부는 경사(tilt), 회전(pivot), 방향 전환(swivel) 등 모니터의 각도 변화가 가능하도록 제작되며, 이러한 각도 변화시 사용자가 적절한 반력을 느끼도록 인간 공학적으로 설계되어 있다.(중략)

  • PDF

Analysis of Delamination Behavior on the Stacking Sequence of Prosthetic Foot Keel in Glass fiber Reinforced Laminates (인공발(Prosthetic Foot) 스프링용 유리섬유강화 적층재의 적층배향에 따른 층간분리거동 해석)

  • Song, Sam-Hong;Kim, Cheol-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.623-631
    • /
    • 2003
  • It is considered that the application of advanced composite materials to the prostheses for the disables is important to improve their bio-mechanical performance. Particularly, energy storing foot prosthesis is mostly important to restore gait ability of the disables with low-extremity amputation since it could provide propulsion at terminal stance enhancing the disables ability to walk long distance even run and jump. Therefore, the energy storing spring of Prosthetic foot keel under cyclic bending moment use mainly of high strength glass fiber reinforced plastic. The main objective of this study was to evaluate the stacking sequence effect using the delamination growth rate(dA$_{D}$/dN) of energy storing spring in glass fiber reinforced plastic under cyclic bending moment. The test results indicated that the shape of delamination zone depends on stacking sequence in GFRP laminates. Delamination area(A$_{D}$) turns out that variable types with the contour increased non-linearly toward the damage zones.nes.

A Basic Study on the Design of the Flexible Keel in the Energy-Storage Prosthetic Foot for the Improvement of the Walking Performance of the Below Knee Amputees (하지 절단환자의 보행 능력 향상을 위한 에너지 저장형 의족의 유연 용골 설계를 위한 기초연구)

  • 장태성;이정주;윤용산;임정옥
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.5
    • /
    • pp.519-530
    • /
    • 1998
  • In this paper, the basic study on the design of the flexible keel of the energy-storage prosthetic foot was performed in order to Improve the walking performance and Increase the activities of the below knee amputees. Based on the analysis of the anthropometric data and the normal gait on two dimensional sagittal plane available In the literature, we presented a model of the basic structure of the flexible keel of the prosthetic foot. The model of the basic structure was composed of the simple beams, and linear rotational spring and damper. Laminated carbon fiber-reinforced composites were selected as the material of the basic structure model of the flexible keel In order to apply the high strength and light weight materials to the basic structure of the flexible keel of the prosthetic foot. The recoverable strain energy In response to the change of beam shape was calculated bur the finite element analysis and it was suggested that the change of beam shape could be the design variable in flexible keel design. The simulation process was systematically designed by using orthogonal array table in order to design the flexible keel structure which could store the more recoverable strain energy. finite element analysis was carried but according to the design of simulations by using the finite element program ABAQUS and the flexible keel structure of the energy-storage prosthetic foot was obtained from the analysis of variance(ANOVA). The dynamic simulation model of the prosthetic walking using the flexible keel structure was made and the dynamic analysis was carried but during one walk cycle. Based on the above results, an effective design process was presented for the development of the prosthetic fool system.

  • PDF

Development of Leg Stiffness Controllable Artificial Tendon Actuator (LeSATA®) Part I - Gait Analysis of the Metatarsophalangeal Joint Tilt Angles Soonhyuck - (하지강성 가변 인공건 액추에이터(LeSATA®)의 개발 Part I - Metatarsophalangeal Joint Tilt Angle의 보행분석 -)

  • Han, Gi-Bong;Eo, Eun-Kyung;Oh, Seung-Hyun;Lee, Soon-Hyuck;Kim, Cheol-Woong
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.153-165
    • /
    • 2013
  • The established gait analysis studies have regarded leg as one single spring. If we can design a knee-ankle actuating mechanism as a primary actuator for supporting knee extension, it might be possible to revolutionary store or release elastic strain energy, which is consumed during the gait cycle, and as a result leg stiffness is expected to increase. An ankle joint actuating mechanism that stores and releases the energy in ankle joint is expected to support and solve excessive artificial leg stiffness caused by the knee actuator (primary actuator) to a reasonable extent. If unnecessary kinematic energy is released with the artificial speed reduction control designed to prevent increase in gait speed caused by increase in time passed, it naturally brings question to the effectiveness of the actuator. As opposed to the already established studies, the authors are currently developing knee-ankle two actuator system under the concept of increasing lower limb stiffness by controlling the speed of gait in relative angular velocity of the two segments. Therefore, the author is convinced that compensatory mechanism caused by knee actuating must exist only in ankle joint. Ankle joint compensatory mechanism can be solved by reverse-examining the change in metatarso-phalangeal joint (MTPJ) tilt angle (${\theta}_1=0^{\circ}$, ${\theta}_2=17^{\circ}$, ${\theta}_3=30^{\circ}$) and the effect of change in gait speed on knee activity.