• 제목/요약/키워드: 에너지예측

검색결과 2,628건 처리시간 0.029초

Stress Intensity Factor of Cracked Plates with Bonded Composite Patch by p-Convergence Based Laminated Plate Theory (p-수렴 적층 평판이론에 의한 균열판의 팻취보강후 응력확대계수 산정)

  • Woo, Kwang-Sung;Han, Sang-Hyun;Yang, Seung-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제28권5A호
    • /
    • pp.649-656
    • /
    • 2008
  • The enhancement of the service life of damaged or cracked structures is a major issue for researchers and engineers. The hierarchic void element based on the integrals of Legendre polynomials is used to characterize the fracture behaviour of unpatched crack as well as repaired crack with bonded composite patches by computing the stress intensity factors and stress contours at the crack tip. Since the equivalent single layer approach is adopted in this study, the proposed element is necessary to represent a discontinuous crack part as a continuum body with zero stiffness. Thus the aspect ratio of this element to represent the crack should be extremely slender. The sensitivity of numerical solution with respect to energy release rate, displacement and stress has been tested to show the robustness of zero stiffness element as the aspect ratio is increased up to 2000. The stiffness derivative method and displacement extrapolation method have been applied to calculate the stress intensity factors of Mode I problem. It is noted that the proposed hierarchical void element can be one of alternatives to analyze the patched crack problems.

Comparisons on the Interface Shear Strength of Geosynthetics Evaluated by Using Various Kinds of Testing Methods (다양한 시험법에 의해 산정된 토목섬유 사이의 접촉면 전단강도 비교)

  • Seo, Min-Woo;Oh, Myoung-Hak;Yoon, Hyun-Suk;Park, Jun-Boum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제26권2C호
    • /
    • pp.73-80
    • /
    • 2006
  • The shear behavior of four different interfaces consisting of four types of geosynthetics was investigated, and both static and dynamic test for the geosynthetic interfaces were conducted. The monotonic shear experiments were performed by using an inclined board apparatus and large direct shear device. The interface shear strength obtained from the inclined board test was compared with calculated values from large direct shear tests. The comparison results indicated that direct shear tests show high possibility to over-predict the shear strength in the low normal stress range where direct shear tests are not performed. Curved failure envelopes were also obtained for interface cases where two static shear tests were conducted. By comparing the friction angles measured from three tests, i.e. direct shear, inclined board, and shaking table test, it was found that the friction angle might be different depending on the test method and normal stresses applied in the research. Therefore, it was concluded that the testing method should be determined carefully by considering the type of loads and the normal stress expected in the field with using the geosynthetic materials installed in the site.

Assessment of Landslide Susceptibility in Jecheon Using Deep Learning Based on Exploratory Data Analysis (데이터 탐색을 활용한 딥러닝 기반 제천 지역 산사태 취약성 분석)

  • Sang-A Ahn;Jung-Hyun Lee;Hyuck-Jin Park
    • The Journal of Engineering Geology
    • /
    • 제33권4호
    • /
    • pp.673-687
    • /
    • 2023
  • Exploratory data analysis is the process of observing and understanding data collected from various sources to identify their distributions and correlations through their structures and characterization. This process can be used to identify correlations among conditioning factors and select the most effective factors for analysis. This can help the assessment of landslide susceptibility, because landslides are usually triggered by multiple factors, and the impacts of these factors vary by region. This study compared two stages of exploratory data analysis to examine the impact of the data exploration procedure on the landslide prediction model's performance with respect to factor selection. Deep-learning-based landslide susceptibility analysis used either a combinations of selected factors or all 23 factors. During the data exploration phase, we used a Pearson correlation coefficient heat map and a histogram of random forest feature importance. We then assessed the accuracy of our deep-learning-based analysis of landslide susceptibility using a confusion matrix. Finally, a landslide susceptibility map was generated using the landslide susceptibility index derived from the proposed analysis. The analysis revealed that using all 23 factors resulted in low accuracy (55.90%), but using the 13 factors selected in one step of exploration improved the accuracy to 81.25%. This was further improved to 92.80% using only the nine conditioning factors selected during both steps of the data exploration. Therefore, exploratory data analysis selected the conditioning factors most suitable for landslide susceptibility analysis and thereby improving the performance of the analysis.

A global-scale assessment of agricultural droughts and their relation to global crop prices (전 지구 농업가뭄 발생특성 및 곡물가격과의 상관성 분석)

  • Kim, Daeha;Lee, Hyun-Ju
    • Journal of Korea Water Resources Association
    • /
    • 제56권12호
    • /
    • pp.883-893
    • /
    • 2023
  • While South Korea's dependence on imported grains is very high, droughts impacts from exporting countries have been overlooked. Using the Evaporative Stress Index (ESI), this study globally analyzed frequency, extent, and long-term trends of agricultural droughts and their relation to natural oscillations and global crop prices. Results showed that global-scale correlations were found between ESI and soil moisture anomalies, and they were particularly strong in crop cultivation areas. The high correlations in crop cultivation areas imply a strong land-atmosphere coupling, which can lead to relatively large yield losses with a minor soil moisture deficits. ESI showed a clear decreasing trend in crop cultivation areas from 1991 to 2022, and this trend may continue due to global warming. The sharp increases in the grain prices in 2012 and 2022 were likely related to increased drought areas in major grain-exporting countries, and they seemed to elevate South Korea's producer price index. This study suggests the need for drought risk management for grain-exporting countries to reduce socioeconomic impacts in South Korea.

Study on the Factors Affecting the Richness Index of Bird Species in Environmental Impact Assessment (환경영향평가에서 조류 종풍부도 변화에 미치는 요인 고찰 연구)

  • Hyunbin Moon;Eunsub Kim;Dongkun Lee
    • Journal of Environmental Impact Assessment
    • /
    • 제33권2호
    • /
    • pp.64-73
    • /
    • 2024
  • As the seriousness of habitat destruction caused by development projects emerges, the importance of environmental impact assessment (EIA) is increasing to preserve biodiversity. In previous studies, research is being conducted to quantitatively evaluate the biodiversity impact of development factors and surrounding environmental factors on the landscape scale, but research on the factors affecting the reduction of biodiversity based on development projects is insufficient. This study examined whether independent variables (size of development project, type of the development, DEM, ecosystem and nature map, distance from the green land, distance from the protected area), which have been proven to effect biodiversity through the previous researches, have a significant effect on the change of richness index (RI) through multi-class logistic regression analysis, T-test, and analysis of the development type. As a result, only the size of development project and the first richness index in EIA showed p-value less than 0.05. And it was confirmed that the reduction in biodiversity was significantly changed in the following construction types: installation of sports facilities, energy development, and development of industrial location and industrial complex. Since the results of this study confirmed that the impact of the variables may be inconsistent depending on the analysis scale, additional study of necessary indicators at the development project is needed to analyze biodiversity changes in EIA accurately.

Measurement of the Plane Wave Reflection Coefficient for the Saturated Granular Medium in the Water Tank and Comparison to Predictions by the Biot Theory (수조에서 입자 매질의 평면파 반사계수 측정과 Biot 이론에 의한 예측)

  • Lee Keun-Hwa
    • The Journal of the Acoustical Society of Korea
    • /
    • 제25권5호
    • /
    • pp.246-256
    • /
    • 2006
  • The plane wave reflection coefficient is an acoustic property containing all the information concerning the ocean bottom and can be used as an input parameter to various acoustic propagation models. In this paper, we measure the plane wave reflection coefficient, the sound speed, thd the attenuation for saturated granular medium in the water tank. Three kinds of glass beads and natural sand are used as the granular medium. The reflection experiment is performed with the sinusoidal tone bursts of 100 kHz at incident angles from 28 to 53 degrees, and the sound speed and attenuation experiment are performed also with the same signal. From the measured reflection signal, the reflection coefficient is calculated with the self calibration method and the experimental uncertainties are discussed. The sound speed and the attenuation measurements are used for the estimation of the porosity and permeability, the main Biot parameters. The estimated values are compared to the directly measured values and used as input values to the Biot theory in order to calculate the theoretical reflection coefficient. Finally, the reflection coefficient predicted by Biot theory is compared to the measured reflection coefficient and their characteristics are discussed.

Sensitivity Analysis Study of Geotechnical Factors for Gas Explosion Vibration in Shallow-depth Underground Hydrogen Storage Facility (저심도 지하 수소저장소에서의 가스 폭발 진동에 대한 지반공학적 인자들의 민감도 분석 연구)

  • Go, Gyu-Hyun;Woo, Hyeon‑Jae;Cao, Van-Hoa;Kim, Hee-Won;Kim, YoungSeok;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • 제40권4호
    • /
    • pp.169-178
    • /
    • 2024
  • While stable mid- to large-scale underground hydrogen storage infrastructures are needed to meet the rapidly increasing demand for hydrogen energy, evaluating the safety of explosion vibrations in adjacent buildings is becoming important because of gas explosions in underground hydrogen storage facilities. In this study, a numerical analysis of vibration safety effects on nearby building structures was performed assuming a hydrogen gas explosion disaster scenario in a low-depth underground hydrogen storage facility. A parametric study using a meta-model was conducted to predict changes in ground dynamic behavior for each combination of ground properties and to analyze sensitivity to geotechnical influencing factors. Directly above the hydrogen storage facility, the unit weight of the ground had the greatest influence on the change in ground vibration due to the explosion, whereas, farther away from the facility, the sensitivity of dynamic properties was found to be high. In addition, in evaluating the vibration stability of ground building structures based on the predicted ground vibration data and blasting vibration tolerance criteria, in the case of large reinforced concrete building structures, the ground vibration safety was guaranteed with a separation distance of about 10-30 m.

Seismic Design of Columns in Inverted V-braced Steel Frames Considering Brace Buckling (가새좌굴을 고려한 역 V형 가새골조의 기둥부재 내진설계법)

  • Cho, Chun-Hee;Kim, Jung-Jae;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • 제22권1호
    • /
    • pp.1-12
    • /
    • 2010
  • According to the capacity design concept which forms the basis of the current steel seismic codes, the braces in concentrically braced frames (CBFs) should dissipate seismic energy through cyclic tension yielding and cyclic compression buckling while the beams and the columns should remain elastic. Brace buckling in inverted V-braced frames induces unbalanced vertical forces which, in turn, impose the additional beam moments and column axial forces. However, due to difficulty in predicting the location of buckling stories, the most conservative approach implied in the design code is to estimate the column axial forces by adding all the unbalanced vertical forces in the upper stories. One alternative approach, less conservative and recommended by the current code, is to estimate the column axial forces based on the amplified seismic load expected at the mechanism-level response. Both are either too conservative or lacking technical foundation. In this paper, three combination rules for a rational estimation of the column axial forces were proposed. The idea central to the three methods is to detect the stories of high buckling potential based on pushover analysis and dynamic behavior. The unbalanced vertical forces in the stories detected as high buckling potential are summed in a linear manner while those in other stories are combined by following the SRSS(square root of sum of squares) rule. The accuracy and design advantage of the three methods were validated by comparing extensive inelastic dynamic analysis results. The mode-shape based method(MSBM), which is both simple and accurate, is recommended as the method of choice for practicing engineers among the three.

Carbon Monoxide Dispersion in an Urban Area Simulated by a CFD Model Coupled to the WRF-Chem Model (WRF-Chem 모델과 결합된 CFD 모델을 활용한 도시 지역의 일산화탄소 확산 연구)

  • Kwon, A-Rum;Park, Soo-Jin;Kang, Geon;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • 제36권5_1호
    • /
    • pp.679-692
    • /
    • 2020
  • We coupled a CFD model to the WRF-Chem model (WRF-CFD model) and investigated the characteristics of flows and carbon monoxide (CO) distributions in a building-congested district. We validated the simulated results against the measured wind speeds, wind directions, and CO concentrations. The WRF-Chem model simulated the winds from southwesterly to southeasterly, overestimating the measured wind speeds. The statistical validation showed that the WRF-CFD model simulated the measured wind speeds more realistically than the WRF-Chem model. The WRF-Chem model significantly underestimated the measured CO concentrations, and the WRF-CFD model improved the CO concentration prediction. Based on the statistical validation results, the WRF-CFD model improved the performance in predicting the CO concentrations by taking complicatedly distributed buildings and mobiles sources of CO into account. At 04 KST on May 22, there was a downdraft around the AQMS, and airflow with a relatively low CO concentration was advected from the upper layer. Resultantly, the CO concentration was lower at the AQMS than the surrounding area. At 15 KST on May 22, there was an updraft around the AQMS. This resulted in a slightly higher CO concentration than the surroundings. The WRF-CFD model transported CO emitted from the mobile sources to the AQMS measurement altitude, well reproducing the measured CO concentration. At 18 KST on May 22, the WRF-CFD model simulated high CO concentrations because of high CO emission, broad updraft area, and an increase in turbulent diffusion cause by wind-shear increase near the ground.

On-site Output Survey and Feed Value Evaluation on Agro- industrial By-products (농산업부산물들에 대한 배출 현장 조사 및 사료적 가치 평가)

  • Kwak, W. S.;Yoon, J. S.
    • Journal of Animal Science and Technology
    • /
    • 제45권2호
    • /
    • pp.251-264
    • /
    • 2003
  • This study was conducted to make on-site survey on the output pattern and utilization situation of 19 by-products selected, to evaluate their nutritional characteristics, to find out a reliable index with which digestion of by-products can be predicted on the basis of chemical compositions analyzed and to diagnose the risk of using book values in the absence of the actual values analyzed for diet formulation. Production and utilization situations of by-products were quite various. Nutritionally, fruit processing by-products such as apple pomace (AP), pear pomace (PP), grape pomace (GP), and persimmon peel (PSP), and bakery by-products (BB) were classified as energy feeds. Soybean curd meal (SCM), animal by- products such as blood (BD), feather meal (FM) and poultry by-products (PB), and activated milk processing sludge (AMS) were classified as protein feeds. Soy hulls (SH), spent mushroom compost (SMC), barley malt hulls (BMH), waste paper (WP) and broiler litter (BL) were classified as roughage. Rumen contents (RC) and restaurant food waste (FW) were nutritionally analogous to complete diets for cattle and swine, respectively. Compared to soybean meal (SBM), BD and FM contained high (P<0.05) levels of amino acids and barley malt sprouts (BMS), AMS and FW contained low (P<0.05) levels of amino acids. Enzymatic (pepsin) digestibilities of proteinaceous feeds ranged between 99 and 66%. In vitro DM digestibility was high (P<0.05) in the order of FW, BB, AP, SH, PP, PSP, BMH, BMS, SCM, GP, RC, PB, BL, WP, SMC, AMS, FM and BD. In vitro DM digestibility had the highest correlation (r=0.68) with nonfibrous carbohydrate among chemical components. Differences between analyzed values of chemical components and book values were considerable. Caution is required in using book values when large amount of by-products are used in diets.