• Title/Summary/Keyword: 에나멜와이어

Search Result 5, Processing Time 0.019 seconds

회원사 동정

  • Korea Electrical Manufacturers Association
    • NEWSLETTER 전기공업
    • /
    • no.94-7 s.104
    • /
    • pp.41-45
    • /
    • 1994
  • PDF

Heat-resistant Enamel Varinish (내열성 에나멜 바니쉬)

  • Kim, Yang-Kook;Bae, Hun-Jai
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.264-272
    • /
    • 1993
  • Current research aimed at investigating of heat-resistance of magnet wire to endow miniaturizing electronic equipment with a high efficiency or reliability. Thermal stability of magnet wire has a close relationship with physical properties of polymeric coating that is formed from enamel varnish. Design of heat-resistant enamel varnish and coating technology of varnish solution were briefly described. Some factors which have a thermal effect on wire were discussed through the evaluation method of the wire properties.

  • PDF

Accelerated Insulation Life Estimation for PAI/Nano Silica Enamelled Wire under Inverter Surge and Temperature Stress (인버터 서지와 온도스트레스 하에서 PAI/Nano Silica 에나멜와이어의 가속절연수명 평가)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1712-1720
    • /
    • 2016
  • AC and DC insulation breakdown voltage was studied for magnet wire coated with double layers of high flexural PAI layer and high anti-corona PAI/nanosilica (15 wt%) layer. The specimens were prepared at various drying temperatures (T/D): $22^{\circ}C$, $240^{\circ}C$, and $260^{\circ}C$, respectively. The increase effects of nanosilica on AC and DC insulation breakdown voltage were not so significant compared to that of magnet wire coil coated with original PAI. And the AC and DC insulation breakdown voltage was improved by decreasing diameter of winding coil. As T/D temperature increased, AC and DC insulation breakdown voltage decreased.

폴리에스테르 바니시에서 나노 실리카의 분산성 향상과 나노 복합체 에나멜 와이어 개발

  • Kim, Yong-Beom;Kim, Eun-Jin;Kim, Seon-Jae;Hwang, Jong-Seon;Choe, Yong-Seong;Seo, Yeong-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.151-151
    • /
    • 2009
  • A enameled wire may have better corona-resistance when its coating material contains nano-sized inorganic particles. However, industrial applications are still limited because an aggregation between nanofillers may happen during coating processes. In this study we use a novel scheme of surface modification with silane on silica nanoparticles using sonochemical reaction where composition and surface density of silanes can be controlled in order to reduce particle-particle attractive interaction. Functionalized nanoparticles are evenly dispersed in the matrix confirmed by SEM and energy dispersive x-ray analysis. Dielectric strength and thermal resistance of the nanocomposite wires are improved while flexibility of the wire maintains.

  • PDF