• Title/Summary/Keyword: 얼굴 특징 정보 추출

Search Result 400, Processing Time 0.022 seconds

A Study on Face feature exetraction using Curvature Characteristic in Stereo Image (스테레오 영상에서의 굴곡 특징을 이용한 얼굴 특징 추출에 관한 연구)

  • Kim, Sang-Myung;Park, Chang-Han;NamKung, Jae-Chan
    • Annual Conference of KIPS
    • /
    • 2003.05a
    • /
    • pp.599-602
    • /
    • 2003
  • 본 논문에서는 스테레오 영상의 정합을 통한 얼굴의 굴곡 특징과 좌표 정보로서 정지 영상에서 생기는 제약 조건의 약화와 굴곡 특징을 이용하여 보다 강건한 얼굴 특징 추출 알고리즘을 제안한다. 얼굴 인식 기술은 정지 영상을 통한 얼굴 영역의 특징들로 얼굴을 구별하고, 얼굴을 검색하기 위하여 다양한 특징을 추출하는데 정지 영상에서는 추출할 수 없는 좌표 정보를 이용한 눈, 코, 입의 정보들과 굴곡 정보를 이용함으로서 얼굴 인식의 효율성을 높이는데 있다. 제안된 알고리즘의 단계는 색상으로부터의 얼굴 영역 검출 단계 얼굴 특징의 추출을 위한 전처리 단계, 눈, 코, 입에 대한 특징 정보로서 사람의 판별 유무와 찾아진 얼굴 영역에 눈 템플릿을 적용하고, 눈 사이의 거리와 기울어짐 코와 입에 대한 거리 정보들로서 스테레오 영상의 굴곡 특징 정보를 추출하는 단계로 이루어져 있다. 또한, 기존의 특징 정보뿐만 아니라 스테레오 영상의 정합을 통한 굴곡 특징 정보를 사용 각각 영상의 종류에 대해서 100%, 93%, 76%의 인식률을 얻었으며 평균 90%로서 정지 영상과의 비교를 통해 8%의 인식률의 향상으로 본 연구의 유효성을 입증하였다.

  • PDF

Facial Caricaturing System - with Correction of Facial Decline - (얼굴 캐리커처 생성 시스템 - 얼굴 기울기 교정을 통한 -)

  • Kim, Yong-Gyun;Lee, Ok-Kyoung;Lee, Chang-Soo;Oh, Hae-Seok
    • Annual Conference of KIPS
    • /
    • 2001.04b
    • /
    • pp.887-890
    • /
    • 2001
  • 본 논문은 사용자로부터 입력된 얼굴 사진을 얼굴 기울기 교정을 거친 후 얼굴 구성요소의 특징정보를 추출하고, 추출된 특징정보와 가장 유사한 캐리커처를 생성하는데 목적이 있다. 우리는 입력된 인물 사진에서 눈 영역 추출을 이용, 얼굴의 기울기를 교정시킨 다음 세그멘테이션을 통하여 인물의 얼굴을 추출하고, 추출된 얼굴의 수직과 수평 히스토그램을 이용하여 얼굴 구성요소를 추출한다. 또한 모양과 크기 등이 다양한 특징정보를 가진 얼굴 구성요소에 관한 데이터베이스를 구축함으로써 캐리커처의 질을 향상시키고자 한다. 우리는 사용자로부터 입력된 사진에서 추출된 얼굴 구성요소의 특징정보와 데이터베이스에 저장되어 있는 캐리커처 이미지의 특징정보와 유사도를 계산한다. 마지막으로 유사도가 가장 높은 캐리커처 이미지를 선택하여 눈, 눈썹, 코, 입, 얼굴형 등을 각각 위치에 매핑시킨다.

  • PDF

Multiple Feature Representation for Efficient Cascaded Face Detection (효과적인 계단식 얼굴 검출을 위한 다중 특징 추출)

  • 소형준;남미영;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.742-744
    • /
    • 2004
  • 본 논문은 복잡한 배경에서의 얼굴 검출에 있어서 다중 특징 추출 데이터로 학습한 계단식 분류기에 의한 방법을 제안한다 얼굴 검출에서 얼굴의 패턴은 상당히 다양한 영상 표현으로 나타나기 때문에 하나의 특징 추출 방법은 사람의 얼굴을 모델링 하기에는 부족하다. 따라서 여기서는 얼굴의 전체적인 지역적인 특징을 나타내는 Subregion과, 얼굴의 주파수 특성에 따라 좀 더 세밀하고 다양한 속성들을 나타내는 Haar 웨이블릿 변환을 이용하여 다중으로 특징을 추출하여 효과적인 모델링을 시도하였다. 특징을 추출한 얼굴과 비얼굴의 패턴(pattern)을 구분하기 위해서 패턴들의 통계적인 특성을 이용하여 각 추출방법에 맞게 학습된 Bayesian 분류기를 직렬로 연결하여 사용하였으며 비얼굴은 얼굴과 유사한 비얼굴(face-like nonface) 패턴들을 사용하여 모델링 하였다. 제안한 얼굴 검출 방식의 성능은 MIT-CMU 시험 영상들을 이용하여 평가하였다. 그 결과 한 가지 특징 추출을 사용하는 것 보다 두 가지 특징 추출을 병행한 계단식 구성이 더 정확한 검출 결과를 나타내었다.

  • PDF

Face classification and analysis based on geometrical feature of face (얼굴의 기하학적 특징정보 기반의 얼굴 특징자 분류 및 해석 시스템)

  • Jeong, Kwang-Min;Kim, Jung-Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1495-1504
    • /
    • 2012
  • This paper proposes an algorithm to classify and analyze facial features such as eyebrow, eye, mouth and chin based on the geometric features of the face. As a preprocessing process to classify and analyze the facial features, the algorithm extracts the facial features such as eyebrow, eye, nose, mouth and chin. From the extracted facial features, it detects the shape and form information and the ratio of distance between the features and formulated them to evaluation functions to classify 12 eyebrows types, 3 eyes types, 9 mouth types and 4 chine types. Using these facial features, it analyzes a face. The face analysis algorithm contains the information about pixel distribution and gradient of each feature. In other words, the algorithm analyzes a face by comparing such information about the features.

Face Recognition Algorithm Using Face Feature Evaluation Function (얼굴특징 평가함수를 이용한 얼굴인식 알고리즘)

  • 김정훈;이응주
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.484-487
    • /
    • 2003
  • 본 논문에서는 CCD 카메라로부터 입력된 얼굴영상에서 피부색상 정보를 이용하여 얼굴을 검출하고 얼굴특징자인 눈, 코, 입의 얼굴특징 벡터를 추출한 후, 벡터들로부터 특징 평가함수를 적용하여 개인의 얼굴을 인식하는 알고리즘을 제안하였다. 제안한 논문에서는 입력 영상에서 대하여 얼굴 피부색의 정보와 명암도 정보를 동시에 사용하여 얼굴영역을 검출한 후, 검출한 얼굴 영역에서 특징점인 눈, 코, 입 등을 추출한 다음, 각 특징 점들에 대한 기하학적 위치특성과 상관성을 이용한 얼굴특징 평가함수를 구성하였다. 제안한 알고리즘으로 230 장의 얼굴영상에 대하여 실험에 적용한 결과 얼굴검출 효율과 인식 성능을 개선할 수 있었다.

  • PDF

A Study on Extraction of Face Region and Facial Characteristics Point (얼굴 영역 및 구성 요소의 특징점 추출에 관한 연구)

  • 김성식;김진태;김동욱
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05c
    • /
    • pp.291-294
    • /
    • 2002
  • 본 논문은 얼굴 영역 및 얼굴 구성 요소의 얼굴 특징점을 추출하는 방법을 제안한다. 얼굴 특징점은 얼굴 인식을 하는데 있어서 중요한 자료이다. 얼굴 영역은 객체 단위 추출 방법을 사용하여 얼굴의 고유 영역만을 추출한다. 얼굴의 구성요소는 각 요소간의 기하학적 정보를 이용하여 얼굴 영역 내에서 추출해 간다. 얼굴 구성요소의 특징점은 미리 정해진 위치에서 특징점을 결정한다. 그리고 이런 특징점간의 상호 연관관계를 설정한다.

  • PDF

Feature Extraction of Face and Face Elements Using Projection and Correction of Incline (투영과 기울기 보정을 이용한 얼굴 및 얼굴 요소의 특징 추출)

  • 김진태;김동욱;오정수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.499-505
    • /
    • 2003
  • This paper proposes methods to extract face elements and facial characteristics points for face recognition. We select a candidate region of the face elements with geometrical information between them inside the extracted face region with skin color and extract them using their inherent features. The facial characteristics to be applied to face recognition is expressed with geometrical relation such as distance and angle between the extracted face elements. Experiment results shows good performance to extract of face elements.

Facial Caricaturing System using Facial Features information (얼굴 특징정보를 이용한 캐리커처 생성 시스템)

  • 이옥경;박연출;오해석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10b
    • /
    • pp.404-406
    • /
    • 2000
  • 캐리커처 생성 시스템은 입력된 인물 사진을 세그먼테이션을 통하여 특징(이목구비)을 추출하고, 추출된 특징정보를 이용하여 그와 유사한 특징정보를 가지는 캐리커처 이미지를 검색하여 매핑시키는 시스템이다. 캐리커처 생성 시스템에서는 얼굴의 대칭 구조를 이용하고 색상과 모양에 대한 정보를 이용하여 얼굴 각각의 특징(이목구비)을 캐리커처의 특징을 구분하는 특징정보로써 활용한다. 본 논문은 인물 사진을 세그멘테이션 처리하여 얻은 부분 영역 특징정보를 이용하여 그와 유사한 캐리커처를 자동으로 생성하는데 목적이 있다. 이 때 사용하는 대칭 구조는 씨앗 픽셀(seed pixel)을 추출한다. 특징정보는 색상의 경우 지역적인 색상정보는 이목구비를 더 뚜렷이 해주고, 전체적인 색상정보는 그 이미지의 피부색의 정보를 나타낸다. 모양의 경우 이목구비의 특징정보를 위해 불변모멘트가 주요하게 사용된다. 또한 데이터베이스는 얼굴의 세부사항(이목구비)에 대한 각각의 캐리커처로 구축되어 있고, 각 세부사항은 특징별 분류되어 있어야 한다. 이런 데이터베이스의 캐리커처와 추출된 얼굴 영상에서의 세부사항을 비교하여 유사도를 계산하고 이를 매핑하므로 개인의 특징을 가진 캐리커처를 자동으로 생성한다.

  • PDF

Real-Time Face Extraction using Color Information based Region Segment and Symmetry Technique (실시간 얼굴 특징 점 추출을 위한 색 정보 기반의 영역분할 및 영역 대칭 기법)

  • 최승혁;김재경;박준;최윤철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.721-723
    • /
    • 2004
  • 최근 가상환경에서 아바타의 활용이 빠르게 증가하면서 아바타 애니메이션에 대한 연구가 활발히 진행되고 있다. 특히 아바타의 사람과 같은 자연스러운 얼굴 애니메이션(Facial Animation)은 사용자에게 아바타가 살아 있는 듯한 느낌(Life-likeness)과 사실감(Believability)을 심어주어 보다 친숙한 인터페이스로 활용될 수 있다. 이러한 얼굴 애니메이션 생성을 위해 얼굴의 특징 점을 추출하는 기법이 끊임없이 이루어져 왔다. 그러나 지금까지의 연구는 실시간으로 사람 얼굴로부터 모션을 생성하고 이를 바로 3D 얼굴 모델에 적용 및 모션 라이브러리를 구축하기 위한 최적화된 알고리즘 개발에 대한 연구가 미흡하였다. 본 논문은 실제 사랑 얼굴 모델로부터 실시간으로 특징 점 인식을 통한 애니메이션 적용 및 라이브러리 생성 기법에 대친 제안한다. 제안 기법에서는 빠르고 정확한 특징 점 추출을 위하여 색 정보를 가공하여 얼굴 영역을 추출해내고 이를 영역 분할하여 필요한 특징 점을 추출하였으며, 자연스러운 모션 생성을 위하여 에러 발생 시 대칭점을 이용한 복구 알고리즘을 개발하였다. 본 논문에서는 이와 같은 색 정보 기반의 영역분할 및 영역 대칭 기법을 제시하여 실시간으로 끊김이 없고 자연스러운 얼굴 모션 라이브러리를 생성 및 적용하였다.

  • PDF

Real-Time Automatic Human Face Detection and Recognition System Using Skin Colors of Face, Face Feature Vectors and Facial Angle Informations (얼굴피부색, 얼굴특징벡터 및 안면각 정보를 이용한 실시간 자동얼굴검출 및 인식시스템)

  • Kim, Yeong-Il;Lee, Eung-Ju
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.491-500
    • /
    • 2002
  • In this paper, we propose a real-time face detection and recognition system by using skin color informations, geometrical feature vectors of face, and facial angle informations from color face image. The proposed algorithm improved face region extraction efficiency by using skin color informations on the HSI color coordinate and face edge information. And also, it improved face recognition efficiency by using geometrical feature vectors of face and facial angles from the extracted face region image. In the experiment, the proposed algorithm shows more improved recognition efficiency as well as face region extraction efficiency than conventional methods.