• Title/Summary/Keyword: 얼굴 특징추출

Search Result 588, Processing Time 0.042 seconds

A Study on Eyes Region Detection on a Mobile Phone (휴대폰에서 눈 영역 검출 연구)

  • Park, Hyun-Ae;Park, Kang-Ryoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.789-792
    • /
    • 2005
  • 최근 급격히 발전한 휴대폰은 다양한 기능을 가지고 있다. 그 중 디지털 카메라의 기능을 겸비한 휴대폰은 디지털 카메라의 판매량을 앞서고 있고, 메가픽셀의 고화소 디카폰의 개발로 대중화가 더욱 가속화되고 있다. 카메라폰을 응용한 연구분야로는 생체인식기술을 적용할 수 있으며, 본 논문은 제약이 많은 휴대폰 환경에서 홍채인식기술을 적용하기 위한 휴대폰 카메라로 취득된 얼굴영상에서의 눈 영역을 검출하는 방법을 제안한다. 얼굴영상에서 눈은 피부나 머리카락보다 빛에 대한 반사율이 높아 각막에 specular reflection이 생기게 되고, 동공은 눈의 다른 지역에 비해 흑화소가 많다는 특징을 가지고 있다. 이러한 두 가지 특징을 이용하여 동공 후보 영역을 선정하였고, 선정된 이진영상에서 수평 프로파일과 수직 프로파일을 적용하여 동공 후보 영역을 줄이면서 동공의 중심 위치를 검출한다. 본 연구는 휴대폰 환경을 고려하였기 때문에 최소한의 메모리 사용과 적은 연산량을 목표로 하여 눈의 위치를 검출 한다. 실험 결과, 입력 영상 내에 일정크기의 동공영역이 존재할 경우 높은 눈 영역 추출 성공률을 보이며, 본 연구에서 제안한 알고리즘을 실제 휴대폰에서 수행한 결과 평균571.6ms의 시간이 소요됨을 알 수 있었다.

  • PDF

Tracking of eyes based on the iterated spatial moment using weighted gray level (명암 가중치를 이용한 반복 수렴 공간 모멘트기반 눈동자의 시선 추적)

  • Choi, Woo-Sung;Lee, Kyu-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1240-1250
    • /
    • 2010
  • In this paper, an eye tracking method is presented by using on iterated spatial moment adapting weighted gray level that can accurately detect and track user's eyes under the complicated background. The region of face is detected by using Haar-like feature before extracting region of eyes to minimize an region of interest from the input picture of CCD camera. And the region of eyes is detected by using eigeneye based on the eigenface of Principal component analysis. Also, feature points of eyes are detected from darkest part in the region of eyes. The tracking of eyes is achieved correctly by using iterated spatial moment adapting weighted gray level.

A Study for Facial nerve palsy Patient Pre-Diagnosis System Development (안면근육마비 환자 사전진단 시스템 개발에 관한 연구)

  • Lee, Sun-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.665-667
    • /
    • 2012
  • 안면신경마비(facial nerve paralysis)는 주로 편측성으로 발생하는 안면신경장애에 의한 안면표정근의 마비를 뜻한다. 이러한 안면신경마비는 중추성 안면신경마비와 말초성 안면신경마비 두 가지로 나뉜다. 안면신경마비의 증상으로는 이환측, 구각부의 처짐 및 침을 흘리는 등 입 주위의 증상이 있어 안면표정의 변화를 일으킨다.[1] 본 논문은 사진을 입력 받아 얼굴영역에서 입 특징점을 추출하여 입력 받은 데이터가 안면신경마비 환자인지 아닌지 판단하고자 한다.

Face Detection through Implementation of adaptive Saliency map (적응적인 Saliency map 모델 구현을 통한 얼굴 검출)

  • Kim, Gi-Jung;Han, Yeong-Jun;Han, Hyeon-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.153-156
    • /
    • 2007
  • 인간의 시각 시스템은 선택적 주의 집중에 의해 시각 수용체로 도달되는 많은 물체들 중에서 필요한 정보만을 추출하여 원하는 작업을 수행한다. Itti와 Koch는 시각적 주의를 제어할 수 있는, 신경계를 모방한 계산적 모델을 제안하였으나 조명환경에 고정적인 saliency map을 구성하였다. 따라서, 본 논문에서는 영상에서 ROI(region of interest)을 탐지하기 위한 조명환경에 적응적인 saliency map 모델을 구성하는 기법을 제시한다. 변화하는 환경에서 원하는 특징을 부각시키기 위하여 상황에 적응적인 동적 가중치를 부여한다. 동적 가중치는 conspicuity map에 S.K. Chang이 제안한 PIM(Picture Information Measure)을 적용시켜 정보량을 측정한 후, 이에 따라 정규화된 값을 부여함으로써 구현한다. 제안하는 조명환경에 강인한 적응적인 saliency map 모델 구현의 성능을 얼굴검출 실험을 통하여 검증하였다.

  • PDF

Adaptive Face Recognition System Using Genetic Alogrithm (유전 알고리즘을 사용한 환경 적응형 얼굴 인식 시스템)

  • 조병모;전인자;이필규
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.574-576
    • /
    • 2002
  • 2D 영상을 가지고 인식 작업을 수행하는데 있어서 입력 영상의 질은 매우 중요한 요소이다. 특히 얼굴 인식과 같은 실시간 입력 데이터와 미리 등록되어진 데이터와 비교하는 경우는 입력 영상과 등록 영상의 상태 차이가 크면 좋은 알고리즘이라 할지라도 높은 성능을 내기는 힘들다. 즉, 테스트를 위한 입력 영상을 등록 영상의 수준과 유사하게 만들어 전체적인 성능을 높일 수 있는 적응형 방법이 필요하다. 본 논문에서는 유전 알고리즘을 이용하여, 하나의 샘플 이미지에서 환경 의존적인 요소를 제거 하기 위한 최적의 필터 조합과 특징 추출 마스크를 생성하였으며, 그것을 사용하여 인식 테스트를 수행하였다. 가상의 편향조명 노이즈를 첨가한 실험에서 진화 전의 약 25% 인식율은 진화 후 약 92% 까지 향상되었으며, 임의의 임펄스 노이즈에 관한 실험에서도 진화 전의 약 47%의 인식율에서 진화 후 약 84%의 높은 인식율 향상 결과를 보여주었다.

  • PDF

EEG-based Person Authentication using Face-Specific Self Representation (본인의 얼굴 영상에 반응하는 뇌전도 신호 기반 개인 인증)

  • Yeom, Seul-Ki;Suk, Heung-Il;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.379-382
    • /
    • 2011
  • 인터넷 뱅킹, 전자 상거래 등의 도래에 따라 생체 인식이 중요한 이슈가 되고 있다. 이에 따라 뇌전도(Electro Encephalo Graphy: EEG)로 측정되는 생체 신호를 통하여 기존 생체 인식의 단점을 보완하는 새로운 연구가 시도되고 있다. 본 논문에서는 인간 본인의 얼굴 사진에 특별한 반응을 보인다는 신경 생리학적 지식을 기반으로 한, 새로운 개인 인증 기술을 제안한다. 구체적으로는 뇌 신호 반응 유도를 위한 시각 자극 제시 패러다임의 설계 EEG신호의 특징을 추출을 위한 개인-의존적인 시간 영역 및 채널 선택 및 효율적인 분류기 설계 방법을 제안한다. 제안한 방법을 이용한 실험 결과는 EEG 기반의 개인 인증 및 인식의 가능성을 제시한다.

Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템)

  • Yeom, Hong-Gi;Joo, Jong-Tae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • As they have more and more intelligence robots or computers these days, so the interaction between intelligence robot(computer) - human is getting more and more important also the emotion recognition and expression are indispensable for interaction between intelligence robot(computer) - human. In this paper, firstly we extract emotional features at speech signal and facial image. Secondly we apply both BL(Bayesian Learning) and PCA(Principal Component Analysis), lastly we classify five emotions patterns(normal, happy, anger, surprise and sad) also, we experiment with decision fusion and feature fusion to enhance emotion recognition rate. The decision fusion method experiment on emotion recognition that result values of each recognition system apply Fuzzy membership function and the feature fusion method selects superior features through SFS(Sequential Forward Selection) method and superior features are applied to Neural Networks based on MLP(Multi Layer Perceptron) for classifying five emotions patterns. and recognized result apply to 2D facial shape for express emotion.

Effective Eye Detection for Face Recognition to Protect Medical Information (의료정보 보호를 위해 얼굴인식에 필요한 효과적인 시선 검출)

  • Kim, Suk-Il;Seok, Gyeong-Hyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.923-932
    • /
    • 2017
  • In this paper, we propose a GRNN(: Generalized Regression Neural Network) algorithms for new eyes and face recognition identification system to solve the points that need corrective action in accordance with the existing problems of facial movements gaze upon it difficult to identify the user and. Using a Kalman filter structural information elements of a face feature to determine the authenticity of the face was estimated future location using the location information of the current head and the treatment time is relatively fast horizontal and vertical elements of the face using a histogram analysis the detected. And the light obtained by configuring the infrared illuminator pupil effects in real-time detection of the pupil, the pupil tracking was to extract the text print vector. The abstract is to be in fully-justified italicized text as it is here, below the author information.

Development of Emotion Recongition System Using Facial Image (얼굴 영상을 이용한 감정 인식 시스템 개발)

  • Kim, M.H.;Joo, Y.H.;Park, J.B.;Lee, J.;Cho, Y.J.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.191-196
    • /
    • 2005
  • Although the technology for emotion recognition is important one which was demanded in various fields, it still remains as the unsolved problems. Especially, there is growing demand for emotion recognition technology based on racial image. The facial image based emotion recognition system is complex system comprised of various technologies. Therefore, various techniques such that facial image analysis, feature vector extraction, pattern recognition technique, and etc, are needed in order to develop this system. In this paper, we propose new emotion recognition system based un previously studied facial image analysis technique. The proposed system recognizes the emotion by using the fuzzy classifier. The facial image database is built up and the performance of the proposed system is verified by using built database.

Face Recognition Using First Moment of Image and Eigenvectors (영상의 1차 모멘트와 고유벡터를 이용한 얼굴인식)

  • Cho Yong-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • This paper presents an efficient face recognition method using both first moment of image and eigenvector. First moment is a method for finding centroid of image, which is applied to exclude the needless backgrounds in the face recognitions by shitting to the centroid of face image. Eigenvector which are the basis images as face features, is extracted by principal component analysis(PCA). This is to improve the recognition performance by excluding the redundancy considering to second-order statistics of face image. The proposed methods has been applied to the problem for recognizing the 60 face images(15 persons *4 scenes) of 320*243 pixels. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. In case of the 45 face images, the experimental results show that the recognition rate of the proposed methods is about 1.6 times and its the classification is about 5.6 times higher than conventional PCA without preprocessing. The city-block has been relatively achieved more an accurate classification than Euclidean or negative angle.

  • PDF