• 제목/요약/키워드: 얼굴 자세변화

검색결과 30건 처리시간 0.023초

인간-로봇 상호작용을 위한 자세변화에 대응 가능한 얼굴 검출 및 인식 방법

  • 이태근;박성기;김문상
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.27-27
    • /
    • 2004
  • 이 논문에서는 이동 로봇 플랫폼 위에 장착되는 비전 시스템을 이용하여 대상 사람의 얼굴위치를 검출, 사용자 인식을 수행하는 방법론을 제시한다. 본 연구에서 적용대상으로 하는 이동로봇은 실내에서 사용 가능한 홈 서비스 로봇(Hombot-2)으로 인간-로봇 상호작용 (human-robot interaction, HCI)이 중요한 기능 중에 하나이다. 로봇에 장착된 스테레오 비전 카메라에서 획득하게 되는 얼굴 영상은 임의로 움직이는 로봇 작업 반경 밖에 있는 사용자의 특성 상 얼굴 영상이 비교적 작게 얻어지고 정면얼굴에서 벗어난 가변적 얼굴 자세변화를 갖게 된다.(중략)

  • PDF

컬러 정보를 이용한 얼굴 정보의 자세불변 고속 검출 (Fast Pose-Invariant Detection of Facial Informations Using Color Cues)

  • 정의정;김복만;최홍문
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2096-2099
    • /
    • 2003
  • 본 논문에서는 입력 영상의 컬러 정보를 이용함으로써 조명 변화나 얼굴의 자세 변화에 둔감하게 얼굴 정보를 고속 검출하는 알고리듬을 제안하였다 계산복잡도가 작으면서도, 조명의 변화에 민감하지 않은 특성을 가진 NCC (normalized color component) 좌표계에서 정의한 살색에 기반하여 얼굴 후보 영역을 검출하고, 검출된 얼굴 후보 영역 내에서의 눈의 검출에도 색상 분포 특성을 이용함으로써 얼굴의 숙임(nod), 돌림(shake), 기울임(tilt)등에 의한 자세 변화에 대해서도 둔감하게 두 눈의 위치를 고속으로 찾도록 하였다. 특히 집중자(concentrator)를 제안 적용하여 유동적인 눈썹의 영향을 줄이고 눈안의 중심 위치를 찾도록 가중치 눈지도(eye map)를 도입하였다. 제안된 알고리듬이 조명 변화나 얼굴의 다양한 자세 변화가 있는 영상에서 얼굴 후보 영역과 두 눈의 위치를 효과적으로 검출함을 실험을 통해 확인하였다.

  • PDF

자세와 표정변화에 강인한 얼굴 특징 검출 (Robust Face Feature Extraction for various Pose and Expression)

  • 정재윤;정진권;조성원;김재민
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.294-298
    • /
    • 2005
  • 바이오메트릭스의 여러 가지 기술 중에서 얼굴인식은 지문인식, 손금인식, 홍채인식 등과는 달리 신체의 일부를 접촉시키지 않고도 원거리에 설치된 카메라를 통해 사람을 확인할 수 있는 장점을 가지고 있다. 그러나 얼굴인식은 조명변화, 표정변화 둥의 다양한 환경변화에 대단히 민감하게 반응하므로 얼굴의 특징 영역에 대한 정확한 추출이 반드시 선행되어야 한다. 얼굴의 주요 특징인 눈, 코, 입, 눈썹은 자세와 표정 그리고 생김새에 따라 다양한 위치, 크기, 형태를 가질 수 있다. 본 연구에서는 변화하는 특징 영역과 특징 점을 정확히 추출하기 위하여 얼굴을 9가지 방향으로 분류하고, 각 분류된 방향에서 특징 영역을 통계적인 형태에 따라 다시 2차로 분류하여, 각각의 형태에 대한 표준 템플릿을 생성하여 검출하는 방법을 제안한다.

  • PDF

원근투영법 기반의 PTZ 카메라를 이용한 머리자세 추정 (Head Pose Estimation Based on Perspective Projection Using PTZ Camera)

  • 김진서;이경주;김계영
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권7호
    • /
    • pp.267-274
    • /
    • 2018
  • 본 논문에서는 PTZ 카메라를 이용한 머리자세추정 방법에 대하여 서술한다. 회전 또는 이동에 의하여 카메라의 외부인자가 변경되면, 추정된 얼굴자세도 변한다. 본 논문에는 PTZ 카메라의 회전과 위치 변화에 독립적으로 머리자세를 추정하는 새로운 방법을 제안한다. 제안하는 방법은 얼굴검출, 특징추출 그리고 자세추정으로 이루어진다. 얼굴검출은 MCT특징을 이용해 검출하고, 얼굴 특징추출은 회귀트리 방법을 이용해 추출하고, 머리자세 추정은 POSIT 알고리즘을 사용한다. 기존의 POSIT 알고리즘은 카메라의 회전을 고려하지 않지만, 카메라의 외부인자 변화에도 강건하게 머리자세를 추정하기 위하여 본 논문은 원근투영법에 기반하여 POSIT를 개선한다. 실험을 통하여 본 논문에서 제안하는 방법이 기존의 방법 보다 RMSE가 약 $0.6^{\circ}$ 개선되는 것을 확인했다.

텍스처 기반의 눈 검출 기법 (Eye Detection Based on Texture Information)

  • 박찬우;박현;문영식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 춘계학술발표대회
    • /
    • pp.315-318
    • /
    • 2007
  • 자동 얼굴 인식, 표정 인식과 같은 얼굴 영상과 관련된 다양한 연구 분야는 일반적으로 입력 얼굴 영상에 대한 정규화가 필요하다. 사람의 얼굴은 표정, 조명 등에 따라 다양한 형태변화가 있어 입력 영상 마다 정확한 대표 특징 점을 찾는 것은 어려운 문제이다. 특히 감고 있는 눈이나 작은 눈 등은 검출하기 어렵기 때문에 얼굴 관련 연구에서 성능을 저하시키는 주요한 원인이 되고 있다. 이에 다양한 변화에 강건한 눈 검출을 위하여 본 논문에서는 눈의 텍스처 정보를 이용한 눈 검출 방법을 제안한다. 얼굴 영역에서 눈의 텍스처가 갖는 특성을 정의하고 두 가지 형태의 Eye 필터를 정의하였다. 제안된 방법은 Adaboost 기반의 얼굴 영역 검출 단계, 조명 정규화 단계, Eye 필터를 이용한 눈 후보 영역 검출 단계, 눈 위치 점 검출 단계 등 총 4단계로 구성된다. 실험 결과들은 제안된 방법이 얼굴의 자세, 표정, 조명 상태 등에 강건한 검출 결과를 보여주며 감은 눈 영상에서도 강건한 결과를 보여준다.

얼굴인식을 위한 어파인 불변 지역 서술자 (Affine Invariant Local Descriptors for Face Recognition)

  • 고용빈;이효종
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권9호
    • /
    • pp.375-380
    • /
    • 2014
  • 오늘날 촬영 상황을 조절할 수 있는 환경, 즉 고정된 촬영각이나 일관된 조도 조건에서는 얼굴인식 기술 수준은 신뢰할 수 있을 정도로 높다. 그러나 복잡한 현실에서의 얼굴 인식은 여전히 어려운 과제이다. SIFT 알고리즘은 촬영각의 변화가 미미할 때에 한하여, 크기와 회전 변화에 무관하게 우수한 성능을 보여주고 있다. 본 논문에서는 다양하게 촬영각이 변하는 환경에서도 얼굴 인식을 할 수 있는 어파인 불변 지역 서술자를 탐지하는 ASIFT(Affine SIFT)라는 알고리즘을 적용하였다. SIFT 알고리즘을 확장하여 만든 ASIFT 알고리즘은 촬영각 변화에 취약한 단점을 극복하였다. 제안하는 방법에서 ASIFT 알고리즘은 표본 이미지에, SIFT 알고리즘은 검증 이미지에 적용하였다. ASIFT 방법은 어파인 변환을 사용하여 다양한 시각에 따른 영상을 생성할 수 있기 때문에 ASIFT 알고리즘은 저장 영상과 실험 영상의 시각 차이에 따른 문제를 해결할 수 있었다. 실험결과 FERET 데이터를 사용했을 때 제안한 방법은 촬영각의 변화가 큰 경우에 기존의 시프트 알고리즘보다도 높은 인식률을 보여주었다.

소유자 인증을 통한 자동시동 및 지능형 원격 도난방지 기술 (Development of Intelligent Remote Vehicle Safety System including Automatic Starting System through Owner Identification)

  • 김권;김재경;이창우;장대식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.17-20
    • /
    • 2007
  • 본 논문은 차량 내부에서 정면의 얼굴 뿐 아니라, 측면의 얼굴도 효과적으로 추출하기 위해 다시점의 Haar-like 특징을 결합하여 사용하는 방법을 개발하여 적용하였고, 얼굴의 위치변화에 비교적 강건한 HMM(Hidden Markov Model)기반의 얼굴 인식을 사용하며, 또한 다양한 얼굴자세, 조명환경 등의 다중 얼굴 자료를 기반으로 하는 다시점 얼굴 DB의 학습을 통해 보다 강건하게 얼굴을 인식할 수 있도록 개선하였다. PC를 통해 운전자의 얼굴이 정상적으로 인식되면 자동으로 시동모듈을 제어하여 시동을 걸어줌으로써 운전자의 편리성을 향상할 수 있고 운전자가 아닌 자가 운전석에 착선한 경우에는 획득된 운전자의 얼굴영상 부분을 원격단말기로 전송하여 운전자 또는 경찰이 이를 이용하여 도난을 방지할 수 있는 조치를 취할 수 있도록 지원한다.

SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적 (Robust AAM-based Face Tracking with Occlusion Using SIFT Features)

  • 엄성은;장준수
    • 정보처리학회논문지B
    • /
    • 제17B권5호
    • /
    • pp.355-362
    • /
    • 2010
  • 얼굴추적은 3차원 공간상에서 머리(head)와 안면(face)의 움직임을 추정하는 기술로, 얼굴 표정 감정인식과 같은 상위 분석단계의 중요한 기반기술이다. 본 논문에서는 AAM 기반의 얼굴추적 알고리즘을 제안한다. AAM은 변형되는 대상을 분할하고 추적하는데 광범위하게 적용되고 있다. 그러나 여전히 여러 가지 해결해야할 제약사항들이 있다. 특히 자체중첩(self-occlusion)과 부분적인 중첩, 그리고 일시적으로 완전히 가려지는 완전중첩 상황에서 보통 국부해에 수렴(local convergence)하거나 발산하기 쉽다. 본 논문에서는 이러한 중첩상황에 대한 AAM의 강인성을 향상시키기 위해서 SIFT 특징을 이용하고 있다. SIFT는 일부 영상의 특징점으로 안정적인 추적이 가능하기 때문에 자체와 부분중첩에 효과적이며, 완전중첩의 상황에도 SIFT의 전역적인 매칭성능으로 별도의 재초기화 없이 연속적인 추적이 가능하다. 또한 추적과정에서 큰 자세변화에 따른 움직임을 효과적으로 추정하기 위해서 다시점(multi-view) 얼굴영상의 SIFT 특징을 온라인으로 등록하여 활용하고 있다. 제안한 알고리즘의 이러한 강인성은 위 세 가지 중첩상황에 대해서 기존 알고리즘들과의 비교실험을 통해서 보여준다.

얼굴 등록자 인증을 위한 클래스 구별 특징 벡터 기반 서포트 벡터 머신 (Class Discriminating Feature Vector-based Support Vector Machine for Face Membership Authentication)

  • 김상훈;설태인;정선태;조성원
    • 전자공학회논문지CI
    • /
    • 제46권1호
    • /
    • pp.112-120
    • /
    • 2009
  • 얼굴 등록자 인증은 얼굴 인식을 기반으로 인증하고자 하는 사람이 등록자인지, 아닌지를 판별하는 것으로, 기본적으로 2클래스 분류 문제이다. 서포트 벡터 머신(Support Vector Machine, 이하 SVM)은 2 클래스 분류 문제에 효과적인 것으로 잘 알려져 있다. 얼굴 등록자 인증의 분류에 사용되었던 기존의 SVM들은 각 클래스 (등록자 클래스, 미등록자 클래스) 구성원의 얼굴 이미지로부터 추출된 이미지 특징 벡터를 이용하여 훈련되고 인증된다. 이렇게 훈련 세트 구성원들의 이미지 특징 벡터들로 훈련된 SVM은 인증시의 얼굴 이미지가 SVM 훈련 세트의 얼굴 이미지들의 조명, 자세, 표정들과 다른 인증 환경의 경우나 등록자의 가입 및 탈퇴 등으로 등록 클래스나 미등록 클래스의 구성과 크기에 변동이 생기는 인증 환경의 경우에, 강인한 성능을 보이기 어려웠다. 본 논문에서는 강인한 얼굴 등록자 인증을 위하여, 효과적인 클래스 구별 특징 벡터 기반 SVM을 제안한다. 훈련과 인증에 사용되는 특징 벡터는 2개의 클래스를 잘 구별할 수 있는 특성을 반영하도록 선택되었기 때문에 이를 이용하여 훈련된 제안된 SVM은 등록자 클래스 구성의 변화 및 얼굴 이미지에 있어서의 조명, 얼굴 자세, 얼굴 표정의 변화에 덜 영향을 받는다. 실험을 통해 제안된 SVM에 기반을 둔 얼굴 등록자 인증 방법이 기존 SVM에 기반을 둔 방법보다 성능이 더 나으며, 등록자 클래스 구성의 변화에도 강인함을 보였다.

통합된 시스템에서의 얼굴검출과 인식기법 (An Integrated Face Detection and Recognition System)

  • 박동희;이규봉;이유홍;나상동;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 춘계종합학술대회
    • /
    • pp.165-170
    • /
    • 2003
  • 본 논문에서는 임의의 장면에도 얼굴 인식에 영향을 받지 않는 통합된 얼굴 인식 방법을 제안한다. 크기 정규화는 피부 색 분할과 log-poler 매핑 절차의 새로운 조합을 통하여 얻어지고, 주요 얼굴 구성 요소 분석은 자세 변화들을 처리하기 위하여 제안된 멀티 뷰 접근을 통해 이루어진다. 주어진 컬러 입력 이미지로부터 검출기는 얼굴을 원형 경계 안에 둘러싸고 코의 위치를 표시하며 다음 인식을 위해, 원형 경계 내에 배치하는 방사형 격자는 특징 벡터 코 중심에 두었다. 컬러로 분할된 영역의 폭으로서 얼굴의 크기를 평가하고, 추출된 특징 벡터는 평가된 크기에 의하여 정규화된 크기이다. 특징 벡터는 얼굴 인식을 위해 훈련된 신경망 분류자에게 입력된다. 시스템은 서로 다른 복합적인 배경에서 다양한 크기와 자세를 가진 20명의 얼굴 데이터 베이스를 사용하여 실험한 결과 얼굴 인식기의 수행능력은 매우 작은 크기의 얼굴 이미지 외에는 87%에서 92%의 평균 인식율을 얻을 수 있었다.

  • PDF