• 제목/요약/키워드: 얼굴 인식 기술

검색결과 473건 처리시간 0.031초

차영상 블록을 이용한 원거리 얼굴영역 검출 (A Long-Distance Face Region Extraction Using B1ock of Difference Image)

  • 박성진;차형태
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.838-840
    • /
    • 2005
  • 얼굴인식 기술은 타 생체 인식 기술에 비해 경제성과 사용자 편리성이 높은 이유로 최근 몇 년간 영상 이해 분야의 가장 성공적인 응용의 하나로 주목받고 있다. 그러나 얼굴인식은 타 생체인식에 비해 정확도가 떨어지는 문제가 있으며 이것은 배경, 조명 또는 포즈등과 같은 요인으로 인해 얼굴인식을 위한 전처리 작업인 얼굴영역 검출이 어렵기 때문이다. 본 논문에서는 얼굴영역 검출을 하기 위해서 나타나는 문제점들인 배경, 조명등의 환경적인 요인을 8x8 블록영상과 블록들의 연결성을 이용하여 제거한 후 얼굴만을 검출한다. 제안된 알고리즘은 복잡한 배경 및 원거리에서 촬영된 입력영상에서도 매우 안정적으로 적용됨을 실험을 통해 확인하였다.

  • PDF

얼굴 인식 기술을 활용한 실감형 인터랙티브 콘텐츠의 구현 - (르네마그리트 특별전) AR포토존을 중심으로 (Implementation of Immersive Interactive Content Using Face Recognition Technology - (Exhibition of ReneMagritte) Focused on 'ARPhotoZone')

  • 이은진;성정환
    • 한국게임학회 논문지
    • /
    • 제20권5호
    • /
    • pp.13-20
    • /
    • 2020
  • 딥러닝의 발전에 따른 생체 인식 기술은 새로운 형태의 콘텐츠를 생산해 낼 수 있게 하였다. 특히 얼굴 인식 기술의 경우 편의성·비강제성 면에서 몰입감을 줄 수 있지만, 대부분의 상용 콘텐츠는 어플리케이션 영역에만 그치는 한계성을 가진다. 따라서 본 논문은 이를 극복하여 실시간 비디오 피드를 기반으로 얼굴 인식 기술을 활용할 수 있는 실감형 인터렉티브 콘텐츠를 구현하고자 한다. 고해상도의 그래픽을 위해 Unity 엔진을 사용하여 제작되었고 그 과정에서 얼굴인식 성능 저하와 프레임 드랍(Frame Drop) 현상이 발생하여 추가적으로 Dlib 툴킷을 사용하고, 얼굴인식 이미지의 해상도를 조절함으로 해당 문제를 해결했다.

이미지 초해상화를 이용한 얼굴 인식 (Face Recognition using Image Super-Resolution)

  • 박준영;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.85-87
    • /
    • 2022
  • 최근 CCTV 출입 기록, 휴대폰 보안, 스마트 매장 등에서 얼굴 인식을 통해 개인을 식별하는 기술이 널리 사용되고 있다. 카메라의 각도, 조명, 사람의 움직임 등 얼굴 인식에 많은 외부 환경이 영향을 미치고 있지만 그중에서도 실제 영상에서 얼굴이 차지하는 영역이 작아 저해상도 얼굴 인식에 어려움을 겪고 있다. 이러한 문제점을 해결하고자 본 논문에서는 이미지 해상도가 얼굴 인식에 끼치는 영향을 알아보고 이미지 초해상화를 통해 얼굴 인식 성능을 개선하고자 한다. 쌍선형, 양3차 회선 보간법과 딥러닝 기반의 이미지 초해상화 모델인 RCAN을 이용하여 업스케일링한 데이터셋에 대해 학습한 ArcFace를 통해 얼굴 검증 평가를 진행하였다. 고해상도 이미지는 얼굴 인식 성능을 향상시키며, RCAN을 사용한 이미지 초해상화가 보간법을 사용한 방법보다 더 좋은 성능을 보였다.

  • PDF

Face Recognition Grand Challenge (FRGC) 및 조명 변화에 강인한 얼굴 인식 기술 개발 동향

  • 황원준;김준모
    • 전자공학회지
    • /
    • 제39권2호
    • /
    • pp.36-44
    • /
    • 2012
  • 본 논문에서는 최근 얼굴 인식 평가에 많이 사용된 FRGC Ver 2.0 DB와 그 프로토콜을 간략히 소개하고 이를 이용한 다양한 얼굴 인식 방법 및 그 개발 동향에 대해서 살펴보고자 한다. FRGC는 객관적인 2D/3D 얼굴 인식 알고리즘 성능 평가를 위해서 공개되었는데, 본 논문에서는 2D 정면 얼굴 인식에 대한 내용을 위주로 기술하고자 한다. FRGC의 2D 얼굴 인식 DB는 주로 조명의 Control 유무에 따른 성능 비교를 위한 평가 프로토콜을 제안하고 있다. 이에 2004년부터 최근까지 10개 이상의 알고리즘이 발표되었고, 본 논문에서는 중요한 11개의 알고리즘을 살펴보고자 한다. 또한 이들 알고리즘에서 핵심적으로 사용되는 특징 추출 알고리즘을 살펴보고 마지막으로 각 알고리즘의 FRGC DB에서의 성능을 비교 평가하고자 한다.

  • PDF

다중 바이오인식 기반 운전면허학원 근태관리 시스템 (Driving School Attendance Management System based on Multi-modal Biometrics)

  • 김용중;박성호;최우준;서대영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.506-509
    • /
    • 2010
  • 본 논문에서는 지문과 얼굴정보를 이용한 다중 바이오인식 기술(Multi-modal Biometric Technology)을 이용한 운전면허학원 근태관리 시스템 구현에 대해 논한다. 지문인식은 Neurotechnology사의 Free Fingerprint Verification SDK를 사용하였으며, 얼굴인식은 얼굴검출 단계에 Adaboost, 특징추출 단계에 Gabor Wavelet Transform을 이용하였다. 마지막 단계인 인식단계는 두 특징벡터 간의 유클리디언 거리를 이용한다. 두 바이오정보를 통한 인증(Verification)의 결정여부는 AND규칙을 이용하여 두 가지의 바이오정보 인증과정을 모두 통과하여야만 최종 인증확인이 되도록 구현하였다. 성능테스트는 10명의 적은 테스트 집합을 이용하였으며 지문과 얼굴정보를 각각 이용하였을 때보다 두 정보를 결합하였을 때 더 나은 인식률을 보였다.

향상된 얼굴 인식 기술을 이용한 퍼지 모델 기반의 감성인식 (Fuzzy-Model-based Emotion Recognition Using Advanced Face Detection)

  • 유태일;김광배;주영훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.2083-2084
    • /
    • 2006
  • 본 논문에서는 조명에 변화에 강인하고 기존의 퍼지 색상 필터보다 정확하고 빠른 얼굴 감지 알고리즘 이용하여 얼굴을 인식하고 얼굴로부터 특징점(눈, 눈썹, 입)틀을 추출하고 추출된 특징점을 이용하여 감성을 판별하는 방법을 제안한다. 향상된 얼굴 인식 기술이란 퍼지 색상 필터의 단점이 영상의 크기와 성능에 따라 처리속도가 느려지는 것을 보완하기 위하여 최소한의 규칙을 사용하여 얼굴 후보 영역을 선별 적용하여 얼굴영역을 추출하는 기법을 말한다. 이렇게 추출된 얼굴영역에서 감정이 변화 할 때 가장 두드러지게 변화를 나타내는 눈, 눈썹 그리고 입의 특징점을 이용하여 감성을 분류한다.

  • PDF

일반 카메라 영상에서의 얼굴 인식률 향상을 위한 얼굴 특징 영역 추출 방법 (A Facial Feature Area Extraction Method for Improving Face Recognition Rate in Camera Image)

  • 김성훈;한기태
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권5호
    • /
    • pp.251-260
    • /
    • 2016
  • 얼굴 인식은 얼굴 영상에서 특징을 추출하고, 이를 다양한 알고리즘을 통해 학습하여 학습된 데이터와 새로운 얼굴 영상에서의 특징과 비교하여 사람을 인식하는 기술로 인식률을 향상시키기 위해서 다양한 방법들이 요구되는 기술이다. 얼굴 인식을 위해 학습 단계에서는 얼굴 영상들로 부터 특징 성분을 추출해야하며, 이를 위한 기존 얼굴 특징 성분 추출 방법에는 선형판별분석(Linear Discriminant Analysis, LDA)이 있다. 이 방법은 얼굴 영상들을 고차원의 공간에서 점들로 표현하고, 클래스 정보와 점의 분포를 분석하여 사람을 판별하기 위한 특징들을 추출하는데, 점의 위치가 얼굴 영상의 화소값에 의해 결정되므로 얼굴 영상에서 불필요한 영역 또는 변화가 자주 발생하는 영역이 포함되는 경우 잘못된 얼굴 특징이 추출될 수 있으며, 특히 일반 카메라 영상을 사용하여 얼굴인식을 수행하는 경우 얼굴과 카메라간의 거리에 따라 얼굴 크기가 다르게 나타나 최종적으로 얼굴 인식률이 저하된다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 일반 카메라를 이용하여 얼굴 영역을 검출하고, 검출된 얼굴 영역에서 Gabor Filter를 이용하여 계산된 얼굴 외곽선을 통해 불필요한 영역을 제거한 후 일정 크기로 얼굴 영역 크기를 정규화하였다. 정규화된 얼굴 영상을 선형 판별 분석을 통해 얼굴 특징 성분을 추출하고, 인공 신경망을 통해 학습하여 얼굴 인식을 수행한 결과 기존의 불필요 영역이 포함된 얼굴 인식 방법보다 약 13% 정도의 인식률 향상이 가능하였다.

고유얼굴을 이용한 얼굴 인식 시스템: 성능분석 (A Face Recognition System using Eigenfaces: Performance Analysis)

  • 김영래;왕보현
    • 한국지능시스템학회논문지
    • /
    • 제15권4호
    • /
    • pp.400-405
    • /
    • 2005
  • 본 논문에서는 고유얼굴을 이용한 얼굴인식 시스템의 성능을 분석한다. 개인의 신분을 확인하는 시스템의 단점을 보완하기 위하여 최근 생체인식 기술이 활발하게 연구되어오고 있으며, 그 중에서도 얼굴인식은 직관적인 이해가 가능하기 때문에 컴퓨터 비전과 패턴인식 분야에서 폭 넓게 연구되고 있다. 고유얼굴을 이용한 얼굴인식 방법은 훈련집합의 얼굴 이미지의 중요한 변화를 효율적으로 표현하는 특징 공간으로 투영시키면서 이루어진다. 여기서 특징 공간에 투영된 얼굴 이미지의 특징을 고유얼굴이라 한다. 개개의 얼굴 이미지는 고유얼굴의 가중함으로 근사화 되므로, 입력 얼굴의 인식은 훈련집합의 가중치와 입력 영상의 가중치를 비교하면서 이루어진다. 본 논문에서는 고유얼굴을 이용한 얼굴인식 방법의 성능을 검증하기 위해서 Harvard 데이터베이스를 이용하였으며, 시스템의 성능 분석을 위하여 조명에 대한 인식성능의 변화, 사용한 고유얼굴의 수에 대한 인식률의 변화, 전처리를 통하여 얻을 수 있는 인식률의 변화, 인식 거부 곡선을 통하여 시스템의 실제 적용 가능성에 대한 실험을 수행하고 결과를 분석한다.

심리로봇적용을 위한 얼굴 영역 처리 속도 향상 및 강인한 얼굴 검출 방법 (Improving the Processing Speed and Robustness of Face Detection for a Psychological Robot Application)

  • 류정탁;양진모;최영숙;박세현
    • 한국산업정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.57-63
    • /
    • 2015
  • 얼굴 표정인식 기술은 다른 감정인식기술에 비해 비접촉성, 비강제성, 편리성의 특징을 가지고 있다. 비전 기술을 심리로봇에 적용하기 위해서는 표정인식을 하기 전 단계에서 얼굴 영역을 정확하고 빠르게 추출할 수 있어야 한다. 본 논문에서는 성능이 향상된 얼굴영역 검출을 위해서 먼저 영상에서 YCbCr 피부색 색상 정보를 이용하여 배경을 제거하고 상태 기반 방법인 Haar-like Feature 방법을 이용하였다. 입력영상에 대하여 배경을 제거함으로써 처리속도가 향상된, 배경에 강건한 얼굴검출 결과를 얻을 수 있었다.

균일분포 신경회로망을 이용한 얼굴인식 시스템 (School of Electronic and Electrical Engineering, Hong Ik University)

  • 조성원;박준하
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 춘계학술대회 학술발표 논문집
    • /
    • pp.171-175
    • /
    • 1997
  • 본 논문에서는 LVQ(Learning Vector Quentization) 신경회로망의 새로운 가중치 초기화법을 제안하고 이를 얼굴인식 시스템에 적용하였다. 제안한 방법은 초기가중치를 패턴 결정 경계면 주변에 설정함으로써 인식율을 높이는 방법이다. 얼굴인식의 특징 추출 방법으로서는 주성분 분석, 모멘트, 푸리에 기술자, 모멘트+주성분 분석 및 푸리에 기술자+주성분 분석 등을 사용하여 실험하였으며, 인식부의 LVQ 신경회로망에 제안된 방법을 적용하여 기존의 방법과 비교 실험하였다. 실험 결과 초기가중치를 최초 패턴으로 가지는 경우, 평균값을 취하는 경우, 랜덤하게 사용하는 경우 등에 비해서 우수한 인식율을 보임을 알 수 있었다.

  • PDF