얼굴인식 기술은 타 생체 인식 기술에 비해 경제성과 사용자 편리성이 높은 이유로 최근 몇 년간 영상 이해 분야의 가장 성공적인 응용의 하나로 주목받고 있다. 그러나 얼굴인식은 타 생체인식에 비해 정확도가 떨어지는 문제가 있으며 이것은 배경, 조명 또는 포즈등과 같은 요인으로 인해 얼굴인식을 위한 전처리 작업인 얼굴영역 검출이 어렵기 때문이다. 본 논문에서는 얼굴영역 검출을 하기 위해서 나타나는 문제점들인 배경, 조명등의 환경적인 요인을 8x8 블록영상과 블록들의 연결성을 이용하여 제거한 후 얼굴만을 검출한다. 제안된 알고리즘은 복잡한 배경 및 원거리에서 촬영된 입력영상에서도 매우 안정적으로 적용됨을 실험을 통해 확인하였다.
딥러닝의 발전에 따른 생체 인식 기술은 새로운 형태의 콘텐츠를 생산해 낼 수 있게 하였다. 특히 얼굴 인식 기술의 경우 편의성·비강제성 면에서 몰입감을 줄 수 있지만, 대부분의 상용 콘텐츠는 어플리케이션 영역에만 그치는 한계성을 가진다. 따라서 본 논문은 이를 극복하여 실시간 비디오 피드를 기반으로 얼굴 인식 기술을 활용할 수 있는 실감형 인터렉티브 콘텐츠를 구현하고자 한다. 고해상도의 그래픽을 위해 Unity 엔진을 사용하여 제작되었고 그 과정에서 얼굴인식 성능 저하와 프레임 드랍(Frame Drop) 현상이 발생하여 추가적으로 Dlib 툴킷을 사용하고, 얼굴인식 이미지의 해상도를 조절함으로 해당 문제를 해결했다.
최근 CCTV 출입 기록, 휴대폰 보안, 스마트 매장 등에서 얼굴 인식을 통해 개인을 식별하는 기술이 널리 사용되고 있다. 카메라의 각도, 조명, 사람의 움직임 등 얼굴 인식에 많은 외부 환경이 영향을 미치고 있지만 그중에서도 실제 영상에서 얼굴이 차지하는 영역이 작아 저해상도 얼굴 인식에 어려움을 겪고 있다. 이러한 문제점을 해결하고자 본 논문에서는 이미지 해상도가 얼굴 인식에 끼치는 영향을 알아보고 이미지 초해상화를 통해 얼굴 인식 성능을 개선하고자 한다. 쌍선형, 양3차 회선 보간법과 딥러닝 기반의 이미지 초해상화 모델인 RCAN을 이용하여 업스케일링한 데이터셋에 대해 학습한 ArcFace를 통해 얼굴 검증 평가를 진행하였다. 고해상도 이미지는 얼굴 인식 성능을 향상시키며, RCAN을 사용한 이미지 초해상화가 보간법을 사용한 방법보다 더 좋은 성능을 보였다.
본 논문에서는 최근 얼굴 인식 평가에 많이 사용된 FRGC Ver 2.0 DB와 그 프로토콜을 간략히 소개하고 이를 이용한 다양한 얼굴 인식 방법 및 그 개발 동향에 대해서 살펴보고자 한다. FRGC는 객관적인 2D/3D 얼굴 인식 알고리즘 성능 평가를 위해서 공개되었는데, 본 논문에서는 2D 정면 얼굴 인식에 대한 내용을 위주로 기술하고자 한다. FRGC의 2D 얼굴 인식 DB는 주로 조명의 Control 유무에 따른 성능 비교를 위한 평가 프로토콜을 제안하고 있다. 이에 2004년부터 최근까지 10개 이상의 알고리즘이 발표되었고, 본 논문에서는 중요한 11개의 알고리즘을 살펴보고자 한다. 또한 이들 알고리즘에서 핵심적으로 사용되는 특징 추출 알고리즘을 살펴보고 마지막으로 각 알고리즘의 FRGC DB에서의 성능을 비교 평가하고자 한다.
본 논문에서는 지문과 얼굴정보를 이용한 다중 바이오인식 기술(Multi-modal Biometric Technology)을 이용한 운전면허학원 근태관리 시스템 구현에 대해 논한다. 지문인식은 Neurotechnology사의 Free Fingerprint Verification SDK를 사용하였으며, 얼굴인식은 얼굴검출 단계에 Adaboost, 특징추출 단계에 Gabor Wavelet Transform을 이용하였다. 마지막 단계인 인식단계는 두 특징벡터 간의 유클리디언 거리를 이용한다. 두 바이오정보를 통한 인증(Verification)의 결정여부는 AND규칙을 이용하여 두 가지의 바이오정보 인증과정을 모두 통과하여야만 최종 인증확인이 되도록 구현하였다. 성능테스트는 10명의 적은 테스트 집합을 이용하였으며 지문과 얼굴정보를 각각 이용하였을 때보다 두 정보를 결합하였을 때 더 나은 인식률을 보였다.
본 논문에서는 조명에 변화에 강인하고 기존의 퍼지 색상 필터보다 정확하고 빠른 얼굴 감지 알고리즘 이용하여 얼굴을 인식하고 얼굴로부터 특징점(눈, 눈썹, 입)틀을 추출하고 추출된 특징점을 이용하여 감성을 판별하는 방법을 제안한다. 향상된 얼굴 인식 기술이란 퍼지 색상 필터의 단점이 영상의 크기와 성능에 따라 처리속도가 느려지는 것을 보완하기 위하여 최소한의 규칙을 사용하여 얼굴 후보 영역을 선별 적용하여 얼굴영역을 추출하는 기법을 말한다. 이렇게 추출된 얼굴영역에서 감정이 변화 할 때 가장 두드러지게 변화를 나타내는 눈, 눈썹 그리고 입의 특징점을 이용하여 감성을 분류한다.
얼굴 인식은 얼굴 영상에서 특징을 추출하고, 이를 다양한 알고리즘을 통해 학습하여 학습된 데이터와 새로운 얼굴 영상에서의 특징과 비교하여 사람을 인식하는 기술로 인식률을 향상시키기 위해서 다양한 방법들이 요구되는 기술이다. 얼굴 인식을 위해 학습 단계에서는 얼굴 영상들로 부터 특징 성분을 추출해야하며, 이를 위한 기존 얼굴 특징 성분 추출 방법에는 선형판별분석(Linear Discriminant Analysis, LDA)이 있다. 이 방법은 얼굴 영상들을 고차원의 공간에서 점들로 표현하고, 클래스 정보와 점의 분포를 분석하여 사람을 판별하기 위한 특징들을 추출하는데, 점의 위치가 얼굴 영상의 화소값에 의해 결정되므로 얼굴 영상에서 불필요한 영역 또는 변화가 자주 발생하는 영역이 포함되는 경우 잘못된 얼굴 특징이 추출될 수 있으며, 특히 일반 카메라 영상을 사용하여 얼굴인식을 수행하는 경우 얼굴과 카메라간의 거리에 따라 얼굴 크기가 다르게 나타나 최종적으로 얼굴 인식률이 저하된다. 따라서 본 논문에서는 이러한 문제점을 해결하기 위해 일반 카메라를 이용하여 얼굴 영역을 검출하고, 검출된 얼굴 영역에서 Gabor Filter를 이용하여 계산된 얼굴 외곽선을 통해 불필요한 영역을 제거한 후 일정 크기로 얼굴 영역 크기를 정규화하였다. 정규화된 얼굴 영상을 선형 판별 분석을 통해 얼굴 특징 성분을 추출하고, 인공 신경망을 통해 학습하여 얼굴 인식을 수행한 결과 기존의 불필요 영역이 포함된 얼굴 인식 방법보다 약 13% 정도의 인식률 향상이 가능하였다.
본 논문에서는 고유얼굴을 이용한 얼굴인식 시스템의 성능을 분석한다. 개인의 신분을 확인하는 시스템의 단점을 보완하기 위하여 최근 생체인식 기술이 활발하게 연구되어오고 있으며, 그 중에서도 얼굴인식은 직관적인 이해가 가능하기 때문에 컴퓨터 비전과 패턴인식 분야에서 폭 넓게 연구되고 있다. 고유얼굴을 이용한 얼굴인식 방법은 훈련집합의 얼굴 이미지의 중요한 변화를 효율적으로 표현하는 특징 공간으로 투영시키면서 이루어진다. 여기서 특징 공간에 투영된 얼굴 이미지의 특징을 고유얼굴이라 한다. 개개의 얼굴 이미지는 고유얼굴의 가중함으로 근사화 되므로, 입력 얼굴의 인식은 훈련집합의 가중치와 입력 영상의 가중치를 비교하면서 이루어진다. 본 논문에서는 고유얼굴을 이용한 얼굴인식 방법의 성능을 검증하기 위해서 Harvard 데이터베이스를 이용하였으며, 시스템의 성능 분석을 위하여 조명에 대한 인식성능의 변화, 사용한 고유얼굴의 수에 대한 인식률의 변화, 전처리를 통하여 얻을 수 있는 인식률의 변화, 인식 거부 곡선을 통하여 시스템의 실제 적용 가능성에 대한 실험을 수행하고 결과를 분석한다.
얼굴 표정인식 기술은 다른 감정인식기술에 비해 비접촉성, 비강제성, 편리성의 특징을 가지고 있다. 비전 기술을 심리로봇에 적용하기 위해서는 표정인식을 하기 전 단계에서 얼굴 영역을 정확하고 빠르게 추출할 수 있어야 한다. 본 논문에서는 성능이 향상된 얼굴영역 검출을 위해서 먼저 영상에서 YCbCr 피부색 색상 정보를 이용하여 배경을 제거하고 상태 기반 방법인 Haar-like Feature 방법을 이용하였다. 입력영상에 대하여 배경을 제거함으로써 처리속도가 향상된, 배경에 강건한 얼굴검출 결과를 얻을 수 있었다.
본 논문에서는 LVQ(Learning Vector Quentization) 신경회로망의 새로운 가중치 초기화법을 제안하고 이를 얼굴인식 시스템에 적용하였다. 제안한 방법은 초기가중치를 패턴 결정 경계면 주변에 설정함으로써 인식율을 높이는 방법이다. 얼굴인식의 특징 추출 방법으로서는 주성분 분석, 모멘트, 푸리에 기술자, 모멘트+주성분 분석 및 푸리에 기술자+주성분 분석 등을 사용하여 실험하였으며, 인식부의 LVQ 신경회로망에 제안된 방법을 적용하여 기존의 방법과 비교 실험하였다. 실험 결과 초기가중치를 최초 패턴으로 가지는 경우, 평균값을 취하는 경우, 랜덤하게 사용하는 경우 등에 비해서 우수한 인식율을 보임을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.