• Title/Summary/Keyword: 얼굴 비디오

Search Result 113, Processing Time 0.028 seconds

Face Detection and Recognition in MPEG Compressed Video (MPEG 압축 비디오 상에서의 얼굴 영역 추출 및 인식)

  • 여창욱;황본우;이성환
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.452-454
    • /
    • 1998
  • 본 논문에서는 MPEG 압축 비디오 상에서 얼굴 영역을 추출하고 이를 인식하는 방법에 대하여 제안한다. 제안된 방법은 크게 MPEG 압축 비디오의 처리를 위한 축소된 DC 영상의 구성 단계, 축소된 DC 영상에서의 얼굴 영역 추출 단계, 그리고 얼굴 영역이 추출된 프레임에 대한 압축 복원 및 얼굴 인식의 3단계로 구성되어있다. DC 영상의 구성 단계에서는 압축 복원 없이 DCT 계수의 DC 값과 2개의 AC 값만을 사용하여 부분적인 2차원 역 DCT 변환을 이용한 방법을 사용하였으며, 얼굴 영역 추출 단계에서는 DC 영상에 대해 얼굴의 색상 및 형태 정보를 이용한 얼굴 후보 영역 추출 방법과 K-L 변환 및 역 변환의 오차에 의한 얼굴 영역 추출 방법을 사용하였다. 얼굴 인식 단계에서는 얼굴 영역이 추출된 프레임에 대하여 GOP 단위의 압축 복원을 수행한 후 고유 얼굴 영상을 이용한 방법으로 얼굴 인식을 수행하였다. 제안된 방법의 성능을 검증하기 위하여 뉴스와 드라마 MPEG 비디오를 대상으로 실험을 수행하였으며, 실험 결과 제안된 방법이 효율적임을 알 수 있었다.

  • PDF

Retrieval System for Query-by-face environment (얼굴에 의한 질의' 환경을 위한 검색 시스템)

  • 고병철;안준한;이해성;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10b
    • /
    • pp.356-358
    • /
    • 1999
  • 최근 몇 년 동안 멀티미디어 정보의 급격한 증가와 더불어, 사용자에게 다양한 형태의 검색 환경 제공하기 위한 연구들이 꾸준히 이루어지고 있지만, '얼굴에 의한 질의(Query-by-face)'에 대한 연구는 다른 검색 방법에 비해 상대적으로 미약한 편이다. 얼굴 검색은 일반적인 내용기반 검색 분야에 비해 어려운 분야로 현재 대부분의 얼굴 인식 및 검색 시스템들은 일정한 배경 및 조명, 동일한 얼굴 크기를 갖는 한정된 형태의 데이터만을 사용한다. 본 논문에서는 영화 비디오로부터 추출된 대표 프레임 중 사용자가 원하는 등장 인물을 찾기 위한 기술 개발을 위해 비디오 영상으로부터 얼굴을 검출하고 인식하는 방법을 제안한다. 기존의 방법들은 실험 영상이 제한되어 있다거나 인식의 정확성을 위해 몇 개의 부수적인 얼굴 데이터를 별도로 보관해야만 했지만 본 논문에서는 배경과 두드러진 특징을 갖는 얼굴 색을 이용하여 얼굴 영역 검출 속도를 향상시키고, 웨이블릿 변환과 하우스돌프 거리(Haudorff distance)를 이용하여 별도의 데이터가 필요없이 얼굴을 인식이 가능한 시스템을 설계하였다. 또한, 영화 비디오 및 뉴스, 인터뷰 비디오 등 다양한 형태의 배경 및 조명, 크기 변화를 갖는 데이터에 대한 실험결과를 통해 본 논문에서 제안하는 방법에 대한 성능 평가 실시하였다.

  • PDF

Intelligent Face Mosaicing Method in Video for Personal Information Protection (개인정보 보호를 위한 비디오에서의 지능형 얼굴 모자이킹 방법)

  • Lim, Hyuk;Choi, Minseok;Choi, Seungbi;Choi, Haechul
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.338-339
    • /
    • 2020
  • 개인 방송의 보편화로 인해 인터넷 혹은 방송으로 유포되는 영상에서 일반인의 얼굴이 빈번히 노출되고 있으며, 동의 받지 않은 얼굴의 방송 노출은 개인 초상권 침해와 같은 사회적 문제를 일으킬 수 있다. 이러한 개인 초상권 침해 문제를 해결하고자 본 논문은 비디오에서 일반인의 얼굴을 검출하고 이에 마스킹을 가하는 방법을 제안한다. 제안 방법은 우선 딥러닝 기반의 Faster R-CNN을 이용하여 모자이킹을 하지 않을 특정인과 모자이킹을 가할 비특정인을 포함한 다수의 얼굴 영상을 학습한다. 학습된 네트워크를 이용하여 입력 비디오에 대해 사람의 얼굴을 검출하고 검출된 결과 중 특정인을 선별해 낸다. 최종적으로 입력 비디오에서 특정인을 제외한 나머지 검출된 얼굴에 대해 모자이킹 처리를 수행함으로써 비디오에서 지능적으로 비특정인의 얼굴을 가린다. 실험결과, 특정인과 비특정인을 포함한 얼굴 검출의 경우 99%의 정확도를 보였으며, 얼굴 검출 결과 중 특정인을 정확히 맞춘 경우는 86%의 정확도를 보였다. 제안 방법은 인터넷 동영상 서비스 및 방송 분야에서 개인 정보 보호를 위해 효과적으로 활용될 수 있을 것으로 기대된다.

  • PDF

Face Detection for Cast Searching in Video (비디오 등장인물 검색을 위한 얼굴검출)

  • Paik Seung-ho;Kim Jun-hwan;Yoo Ji-sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.983-991
    • /
    • 2005
  • Human faces are commonly found in a video such as a drama and provide useful information for video content analysis. Therefore, face detection plays an important role in applications such as face recognition, and face image database management. In this paper, we propose a face detection algorithm based on pre-processing of scene change detection for indexing and cast searching in video. The proposed algorithm consists of three stages: scene change detection stage, face region detection stage, and eyes and mouth detection stage. Experimental results show that the proposed algorithm can detect faces successfully over a wide range of facial variations in scale, rotation, pose, and position, and the performance is improved by $24\%$with profile images comparing with conventional methods using color components.

Face Detection and Recognition in MPEG Compressed Video (MPEG 압축 비디오 상에서의 얼굴 영역 추출 및 인식)

  • 여창욱;유명현
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.2
    • /
    • pp.79-87
    • /
    • 2000
  • In this paper we present a face recognition and face detection algorithm in MPEG compressed video. The proposed method consists three stage of processing steps. The first step is to produce a spatially reduced DC image form MPEG compressed video for processing. And the second step is face detection on reduced DC image. Finally, the last step is face recognition on partially extracted compressed frames which contain the detected faces. The spatially reduced DC image is produced from two dimensional inverse DCT of the DC coefficient and the first two AC coefficients. The face detection is performed on DC image and face recognition is performed on one extracted frame per GOP by using the K-L transform. In order to evaluate the proposed method, we carried out experiments on video database. The experiment results show the proposed method is very efficient and helpful for target tasks.

  • PDF

Face detection enhancement using independent color channels (독립적 컬러채널을 이용한 얼굴검출 성능개선)

  • Lee, Young-Bok;Min, Hyun-Seok;Ro, Yong-Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.05a
    • /
    • pp.95-98
    • /
    • 2008
  • 본 논문은 기존의 질감기반 (texture) 얼굴검출 시스템에서 컬러 영상을 도입하여 성능개선의 중요한 부분인 얼굴 오검출율을 줄이는 방법을 제안한다. 얼굴 영상의 컬러 성분은 흑백 성분과 비교하여 낮은 공간 주파수 영역을 가지는 특징이 있다. 질감기반 얼굴검출에서 높은 대비 (contrast) 성분의 에지는 얼굴이 아닌 영역에서 얼굴로 오인할 수가 있다. 본 논문에서는 이런 오인을 감소하기 위해 독립적인 컬러 채널 성분들을 질감기반 얼굴 검출에 각각 이용하여 그 얻어진 결과들을 융합 (fusion) 하는 방법을 제안한다. 실험결과로 제안한 칼라 채널 융합 방법을 통해 얻은 얼굴 검출율은 기존 흑백 영상과 비슷하게 유지되며 오검출율을 현저히 줄이는 것을 보였다.

Fast Tracking of Face Region In Video Images using Color Histogram (칼라 히스토그램을 이용한 비디오 영상에서 얼굴 영역의 고속 추적)

  • 유태웅;오일석
    • Proceedings of the Korea Database Society Conference
    • /
    • 1995.12a
    • /
    • pp.165-168
    • /
    • 1995
  • 본 논문은 비디오 연속 영상에서 얼굴의 위치를 추적하는 알고리즘에 관하여 기술한다. 컴퓨터 비젼에서 대량의 비디오 연속 영상내 물체 추적은 실시간에 처리되는 빠른 알고리즘이 요구된다. 기존의 방법은 형태에 기반한 알고리즘으로 물체의 회전, 크기 변화, 겹침 등에 대한 문제에 민감하여 여러 가지 어려움이 발생한다. 그러나 칼라를 이용한 알고리즘은 이러한 문제에 대하여 둔감하여 훨씬 효과적이다. 본 논문은 칼라 3D 히스토그램을 이용한 Swain과 Ballard의 역 투사(backprojection) 방법을 적용하여 비디오 연속 영상에서 얼굴의 위치를 빠르고 정확히 추적하는 알고리즘을 제안한다.

  • PDF

A Study on Scene Change Detection Using Facial Regions Extraction (얼굴 영역 추출에 의한 장면 전환 검출에 관한 연구)

  • 최경애;최기호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.609-613
    • /
    • 2002
  • 본 논문에서는 효과적인 비디오 인덱싱을 위해 얼굴 영역 추출을 통한 장면 전환 검출 방법을 제시하였다. 히스토그램과 사람의 피부색 검출을 통해 사람의 얼굴을 포함하는 후보 프레임을 찾고, 얼굴 영역과 특징 추출을 통해 사람을 포함하는 키 프레임을 검출하여 비디오의 장면 전환 프레임을 검출하고, 실험을 통해 제안된 방법의 우수성을 보였다.

  • PDF

Automatic Characters Analysis System in Broadcasting Videos (방송 비디오 등장 인물 자동 분석 시스템)

  • Kim, Ki-Nam;Lee, Heun-Jin;Kim, Hyoung-Joon;Jung, Byunghee;Ha, Myung-Hwan;Park, Sung-Choon;Kim, Whoi-Yul
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2004.05a
    • /
    • pp.801-804
    • /
    • 2004
  • 본 논문에서는 등장 인물 검출 및 인식과 함께 등장 인물의 출연 구간 분석이 가능한 시스템을 제안한다. 드라마, 스포츠와 같은 방송 비디오는 그 특성상 인물이 중심이 되며 각 시점에 등장하는 주요 인물은 방송용 비디오의 중요한 특징이 된다. 따라서 방송용 비디오의 중요한 특징인 등장 인물을 분석하여 효율적인 비디오 관리 시스템을 개발할 수 있다. 본 논문에서 제안된 ACAV(Automatic Characters Analysis in Videos) 시스템은 등장 인물을 검출하여 인물 DB에 등록하는 FAGIS(FAce reGIStration)와 생성된 인물 DB을 이용하여 등장 인물을 분석하는 FACOG(FAce reCOGnition)로 구성된다. 상용화된 등장 인물 분석 시스템인 FaceIt과의 성능 비교를 통해 ACAV의 성능을 검증하였다. 얼굴 검출 실험에서 ACAV의 얼굴 검출률은 84.3%로 FaceIt 보다 약 30% 높았고, 얼굴 인식 실험에서도 ACAV의 얼굴 인식률은 75.7%로 FaceIt 보다 27.5% 높은 성능을 보였다. ACAV 시스템은 방송 멀티미디어 공급자를 위한 대용량 비디오 관리 시스템으로 이용될 수 있으며 일반 사용자를 대상으로 한 PVR(Personal Video Recorder), 모바일 폰 등의 비디오 관리 시스템으로도 이용될 수 있다.

  • PDF

Style Synthesis of Speech Videos Through Generative Adversarial Neural Networks (적대적 생성 신경망을 통한 얼굴 비디오 스타일 합성 연구)

  • Choi, Hee Jo;Park, Goo Man
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.11
    • /
    • pp.465-472
    • /
    • 2022
  • In this paper, the style synthesis network is trained to generate style-synthesized video through the style synthesis through training Stylegan and the video synthesis network for video synthesis. In order to improve the point that the gaze or expression does not transfer stably, 3D face restoration technology is applied to control important features such as the pose, gaze, and expression of the head using 3D face information. In addition, by training the discriminators for the dynamics, mouth shape, image, and gaze of the Head2head network, it is possible to create a stable style synthesis video that maintains more probabilities and consistency. Using the FaceForensic dataset and the MetFace dataset, it was confirmed that the performance was increased by converting one video into another video while maintaining the consistent movement of the target face, and generating natural data through video synthesis using 3D face information from the source video's face.