Proceedings of the Korean Information Science Society Conference
/
1998.10c
/
pp.452-454
/
1998
본 논문에서는 MPEG 압축 비디오 상에서 얼굴 영역을 추출하고 이를 인식하는 방법에 대하여 제안한다. 제안된 방법은 크게 MPEG 압축 비디오의 처리를 위한 축소된 DC 영상의 구성 단계, 축소된 DC 영상에서의 얼굴 영역 추출 단계, 그리고 얼굴 영역이 추출된 프레임에 대한 압축 복원 및 얼굴 인식의 3단계로 구성되어있다. DC 영상의 구성 단계에서는 압축 복원 없이 DCT 계수의 DC 값과 2개의 AC 값만을 사용하여 부분적인 2차원 역 DCT 변환을 이용한 방법을 사용하였으며, 얼굴 영역 추출 단계에서는 DC 영상에 대해 얼굴의 색상 및 형태 정보를 이용한 얼굴 후보 영역 추출 방법과 K-L 변환 및 역 변환의 오차에 의한 얼굴 영역 추출 방법을 사용하였다. 얼굴 인식 단계에서는 얼굴 영역이 추출된 프레임에 대하여 GOP 단위의 압축 복원을 수행한 후 고유 얼굴 영상을 이용한 방법으로 얼굴 인식을 수행하였다. 제안된 방법의 성능을 검증하기 위하여 뉴스와 드라마 MPEG 비디오를 대상으로 실험을 수행하였으며, 실험 결과 제안된 방법이 효율적임을 알 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.356-358
/
1999
최근 몇 년 동안 멀티미디어 정보의 급격한 증가와 더불어, 사용자에게 다양한 형태의 검색 환경 제공하기 위한 연구들이 꾸준히 이루어지고 있지만, '얼굴에 의한 질의(Query-by-face)'에 대한 연구는 다른 검색 방법에 비해 상대적으로 미약한 편이다. 얼굴 검색은 일반적인 내용기반 검색 분야에 비해 어려운 분야로 현재 대부분의 얼굴 인식 및 검색 시스템들은 일정한 배경 및 조명, 동일한 얼굴 크기를 갖는 한정된 형태의 데이터만을 사용한다. 본 논문에서는 영화 비디오로부터 추출된 대표 프레임 중 사용자가 원하는 등장 인물을 찾기 위한 기술 개발을 위해 비디오 영상으로부터 얼굴을 검출하고 인식하는 방법을 제안한다. 기존의 방법들은 실험 영상이 제한되어 있다거나 인식의 정확성을 위해 몇 개의 부수적인 얼굴 데이터를 별도로 보관해야만 했지만 본 논문에서는 배경과 두드러진 특징을 갖는 얼굴 색을 이용하여 얼굴 영역 검출 속도를 향상시키고, 웨이블릿 변환과 하우스돌프 거리(Haudorff distance)를 이용하여 별도의 데이터가 필요없이 얼굴을 인식이 가능한 시스템을 설계하였다. 또한, 영화 비디오 및 뉴스, 인터뷰 비디오 등 다양한 형태의 배경 및 조명, 크기 변화를 갖는 데이터에 대한 실험결과를 통해 본 논문에서 제안하는 방법에 대한 성능 평가 실시하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.11a
/
pp.338-339
/
2020
개인 방송의 보편화로 인해 인터넷 혹은 방송으로 유포되는 영상에서 일반인의 얼굴이 빈번히 노출되고 있으며, 동의 받지 않은 얼굴의 방송 노출은 개인 초상권 침해와 같은 사회적 문제를 일으킬 수 있다. 이러한 개인 초상권 침해 문제를 해결하고자 본 논문은 비디오에서 일반인의 얼굴을 검출하고 이에 마스킹을 가하는 방법을 제안한다. 제안 방법은 우선 딥러닝 기반의 Faster R-CNN을 이용하여 모자이킹을 하지 않을 특정인과 모자이킹을 가할 비특정인을 포함한 다수의 얼굴 영상을 학습한다. 학습된 네트워크를 이용하여 입력 비디오에 대해 사람의 얼굴을 검출하고 검출된 결과 중 특정인을 선별해 낸다. 최종적으로 입력 비디오에서 특정인을 제외한 나머지 검출된 얼굴에 대해 모자이킹 처리를 수행함으로써 비디오에서 지능적으로 비특정인의 얼굴을 가린다. 실험결과, 특정인과 비특정인을 포함한 얼굴 검출의 경우 99%의 정확도를 보였으며, 얼굴 검출 결과 중 특정인을 정확히 맞춘 경우는 86%의 정확도를 보였다. 제안 방법은 인터넷 동영상 서비스 및 방송 분야에서 개인 정보 보호를 위해 효과적으로 활용될 수 있을 것으로 기대된다.
The Journal of Korean Institute of Communications and Information Sciences
/
v.30
no.10C
/
pp.983-991
/
2005
Human faces are commonly found in a video such as a drama and provide useful information for video content analysis. Therefore, face detection plays an important role in applications such as face recognition, and face image database management. In this paper, we propose a face detection algorithm based on pre-processing of scene change detection for indexing and cast searching in video. The proposed algorithm consists of three stages: scene change detection stage, face region detection stage, and eyes and mouth detection stage. Experimental results show that the proposed algorithm can detect faces successfully over a wide range of facial variations in scale, rotation, pose, and position, and the performance is improved by $24\%$with profile images comparing with conventional methods using color components.
In this paper we present a face recognition and face detection algorithm in MPEG compressed video. The proposed method consists three stage of processing steps. The first step is to produce a spatially reduced DC image form MPEG compressed video for processing. And the second step is face detection on reduced DC image. Finally, the last step is face recognition on partially extracted compressed frames which contain the detected faces. The spatially reduced DC image is produced from two dimensional inverse DCT of the DC coefficient and the first two AC coefficients. The face detection is performed on DC image and face recognition is performed on one extracted frame per GOP by using the K-L transform. In order to evaluate the proposed method, we carried out experiments on video database. The experiment results show the proposed method is very efficient and helpful for target tasks.
Proceedings of the Korea Information Processing Society Conference
/
2008.05a
/
pp.95-98
/
2008
본 논문은 기존의 질감기반 (texture) 얼굴검출 시스템에서 컬러 영상을 도입하여 성능개선의 중요한 부분인 얼굴 오검출율을 줄이는 방법을 제안한다. 얼굴 영상의 컬러 성분은 흑백 성분과 비교하여 낮은 공간 주파수 영역을 가지는 특징이 있다. 질감기반 얼굴검출에서 높은 대비 (contrast) 성분의 에지는 얼굴이 아닌 영역에서 얼굴로 오인할 수가 있다. 본 논문에서는 이런 오인을 감소하기 위해 독립적인 컬러 채널 성분들을 질감기반 얼굴 검출에 각각 이용하여 그 얻어진 결과들을 융합 (fusion) 하는 방법을 제안한다. 실험결과로 제안한 칼라 채널 융합 방법을 통해 얻은 얼굴 검출율은 기존 흑백 영상과 비슷하게 유지되며 오검출율을 현저히 줄이는 것을 보였다.
Proceedings of the Korea Database Society Conference
/
1995.12a
/
pp.165-168
/
1995
본 논문은 비디오 연속 영상에서 얼굴의 위치를 추적하는 알고리즘에 관하여 기술한다. 컴퓨터 비젼에서 대량의 비디오 연속 영상내 물체 추적은 실시간에 처리되는 빠른 알고리즘이 요구된다. 기존의 방법은 형태에 기반한 알고리즘으로 물체의 회전, 크기 변화, 겹침 등에 대한 문제에 민감하여 여러 가지 어려움이 발생한다. 그러나 칼라를 이용한 알고리즘은 이러한 문제에 대하여 둔감하여 훨씬 효과적이다. 본 논문은 칼라 3D 히스토그램을 이용한 Swain과 Ballard의 역 투사(backprojection) 방법을 적용하여 비디오 연속 영상에서 얼굴의 위치를 빠르고 정확히 추적하는 알고리즘을 제안한다.
Proceedings of the Korea Multimedia Society Conference
/
2002.05d
/
pp.609-613
/
2002
본 논문에서는 효과적인 비디오 인덱싱을 위해 얼굴 영역 추출을 통한 장면 전환 검출 방법을 제시하였다. 히스토그램과 사람의 피부색 검출을 통해 사람의 얼굴을 포함하는 후보 프레임을 찾고, 얼굴 영역과 특징 추출을 통해 사람을 포함하는 키 프레임을 검출하여 비디오의 장면 전환 프레임을 검출하고, 실험을 통해 제안된 방법의 우수성을 보였다.
Kim, Ki-Nam;Lee, Heun-Jin;Kim, Hyoung-Joon;Jung, Byunghee;Ha, Myung-Hwan;Park, Sung-Choon;Kim, Whoi-Yul
Proceedings of the Korea Information Processing Society Conference
/
2004.05a
/
pp.801-804
/
2004
본 논문에서는 등장 인물 검출 및 인식과 함께 등장 인물의 출연 구간 분석이 가능한 시스템을 제안한다. 드라마, 스포츠와 같은 방송 비디오는 그 특성상 인물이 중심이 되며 각 시점에 등장하는 주요 인물은 방송용 비디오의 중요한 특징이 된다. 따라서 방송용 비디오의 중요한 특징인 등장 인물을 분석하여 효율적인 비디오 관리 시스템을 개발할 수 있다. 본 논문에서 제안된 ACAV(Automatic Characters Analysis in Videos) 시스템은 등장 인물을 검출하여 인물 DB에 등록하는 FAGIS(FAce reGIStration)와 생성된 인물 DB을 이용하여 등장 인물을 분석하는 FACOG(FAce reCOGnition)로 구성된다. 상용화된 등장 인물 분석 시스템인 FaceIt과의 성능 비교를 통해 ACAV의 성능을 검증하였다. 얼굴 검출 실험에서 ACAV의 얼굴 검출률은 84.3%로 FaceIt 보다 약 30% 높았고, 얼굴 인식 실험에서도 ACAV의 얼굴 인식률은 75.7%로 FaceIt 보다 27.5% 높은 성능을 보였다. ACAV 시스템은 방송 멀티미디어 공급자를 위한 대용량 비디오 관리 시스템으로 이용될 수 있으며 일반 사용자를 대상으로 한 PVR(Personal Video Recorder), 모바일 폰 등의 비디오 관리 시스템으로도 이용될 수 있다.
KIPS Transactions on Software and Data Engineering
/
v.11
no.11
/
pp.465-472
/
2022
In this paper, the style synthesis network is trained to generate style-synthesized video through the style synthesis through training Stylegan and the video synthesis network for video synthesis. In order to improve the point that the gaze or expression does not transfer stably, 3D face restoration technology is applied to control important features such as the pose, gaze, and expression of the head using 3D face information. In addition, by training the discriminators for the dynamics, mouth shape, image, and gaze of the Head2head network, it is possible to create a stable style synthesis video that maintains more probabilities and consistency. Using the FaceForensic dataset and the MetFace dataset, it was confirmed that the performance was increased by converting one video into another video while maintaining the consistent movement of the target face, and generating natural data through video synthesis using 3D face information from the source video's face.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.