컴퓨터 시각 인식 방법을 이용하여 얼굴의 3차원 움직임 량을 추정하고자 하는 연구는 가상 현실 환경에서 얼굴 움직임에 의한 3차원 그래픽 화면 조정, 시뮬레이터에서의 훈련자 얼굴 움직임에 의한 화면 조정 및 모니터상의 시선 위치 파악 등을 위해 필수적으로 요구되는 기술로서 최근 활발히 연구되고 있다. 기존에 얼굴의 3차원 움직임 량을 추정하고자 하는 연구들은 대부분 확장 칼만 필터(extended kalman filter)를 이용하였으나, 이러한 방법은 필터의 초기 값을 정확하게 설정해야하는 제약 요소를 갖고 있으며, 또한 얼굴의 회전 방향 변화 시 이에 대처하지 못하는 경우 역시 종종 발생한다. 본 논문에서는 이러한 문제점을 해결하기 위하여 확장 칼만 필터의 변형 형태인 반복적 확장 칼만 필터를 이용하여 얼굴의 3차원 움직임 량을 추정하였다. 반복적 확장 칼만 필터에서는 확장 칼만 필터에서 계산되어 나오는 추정 오차 공분산 행렬 값이 미리 정해진 임계치보다 커지는 경우, 현재 얼굴의 움직임 량을 제대로 추정하지 못하고 있는 것으로 판단하여 칼만 필터에서 사용하는 회전 및 이동 속도, 그리고 회전 및 이동 각 속도를 변형함으로써 얼굴의 움직임 량을 정확하게 추정할 수 있도록 하는 방법이다. 실험 결과 반복적 확장 칼만 필터를 사용하였을 경우에 얼굴의 급격한 회전 방향 변화에도 얼굴의 3차원 움직임 량을 정확하게 추정할 수 있음을 알 수 있었다.
본 논문에서는 기하학적인 3차원 모델을 사용하지 않고 정면이 얼굴 영상 및 2차원 메쉬만으로 얼굴의 포즈 변형을 수행하는 영상기반 렌더링(Image Based Rendering; IBR) 기법을 제안한다. 3차원 기하학적 모델을 대신하기 위해, 먼저 표준 인물의 정면, 좌우 반측면, 좌우 측면의 얼굴 영상에 대한 표준 메쉬를 작성한다. 합성하고자 하는 임의의 인물에 대해서는 주어진 정면 얼굴 영상의 메쉬만을 작성하고, 그 밖의 메쉬는 표준 메쉬 집합을 근거로 자동 생성된다. 그런 다음, 메쉬 제어점들의 중첩 및 역전을 허용하도록 개선한 역전가능 메쉬워프 알고리즘(invertible meshwarp algorithm)을 이용하여 얼굴의 입체적인 회전 변형을 수행한다. 또한, 눈이나 입의 개폐 변형도 동일한 워핑 알고리즘으로 구현한다. 얼굴 변형 성능을 평가하기 위해, 총 10명으로부터 머리를 수평으로 회전하면서 동영상을 취득한 후, 실제 영상과 변형 영상마다 양 눈의 중간 위치인 기준점에서 각 특징점까지의 거리를 계산하여 평균 차이를 구하였다. 그 결과, 기준점에서 입의 중간 위치까지의 거리에 비해 약 7.0%의 평균 위치 오차만이 발생하였다.
일반적인 영상에서 얼굴의 위치를 찾아내는 문제는 넓은 응용 영역에도 불구하고 변형의 다양성 때문에 아직도 많은 연구를 필요로 하는 주제이다. 표정, 방향, 회전, 크기, 성별, 나이 등에 따른 얼굴의 변형이 다양하기 때문이다. 이러한 변형을 적절하게 고려하기 위해서 본 논문에서는 특징 요소에 기반을 둔 방법을 사용하였다. 얼굴을 이루는 특징 요소들, 즉, 눈썹, 눈, 코, 입의 배치에 근거해서 얼마나 실제의 얼굴과 비슷한 배치를 이루는 가를 계산하여 얼굴의 위치를 확인한다. 이러한 작업에서는 특징 요소들을 정확히 찾아내는 것이 중요한 문제이다. 본 논문에서는 특징 요소를 정확히 찾기 위하여 일반적인 에지를 찾는 방법대신 크기나 방향을 고려하는 조정 가능한 필터를 사용하였고 특징 요소 기반 방법의 약점을 극복하기 위해서 변형 가능한 템플릿을 사용하여 검증작업을 수행하였다. 또한 기존의 특징 요소 기반 방법을 영상 전체에 대해 적용하면서 검출률이 떨어지는 것을 고려해 본 논문에서는 칼라 영상의 색 정보를 이용하여 작업 영역을 줄이고 검출률을 높이기 위해 변화가 다양한 살색을 찾을 수 있는 분석적인 살색 필터를 구성하였다.
본 논문은 기존 평행좌표를 이용하는 얼굴 영상 대신 극좌표계 변환을 이용한 얼굴 영상을 이용하여 회전에 강인한 얼굴인식 방법을 제안한다. 극좌표계 변환 방법은 얼굴의 중심부분의 한 점을 극으로 삼아 이 점을 기준으로 360도 각 방향으로 일정 길이만큼 얼굴 영상을 샘플링 하여 새로운 얼굴 영상을 제작하는 방법이다. 이 극좌표계 변환 방법을 이용해 재구성된 영상에 대해 회귀( regression )문제 해결을 위해 변형된 LDA인 LDAr(LDA for regression)을 이용하여 얼굴의 중심부분의한 점인 극을 중심으로 임의의 각도로 회전된 영상의 회전 정도를 추정하여 이를 정규화 시키는 방법을 통해 얼굴 인식의 인식률을 향상시키고자 한다. LDAr은 LDA의 기본개념인 각 클래스 간 떨어진 정도를 최대화하는 것이 목적으로 클래스간 분산과 클래스내 분산의 비율을 최대화 하는 방법을 응용하여 이를 회귀문제에 적용할 수 있게 변형을 한 것이다. 즉, LDAr은 목표값(target)의 차이가 큰 샘플들과 목표값의 차이가 작은 샘플들 간의 거리의 비율을 최대화 하는 것을 목적으로 하게 된다. 제안된 방법을 Yale데이터에 적용하여 임의의 각도로 회전시킨 영상에 대해 회전 각도를 정확히 찾아내는 것을 확인할 수 있었다.
OpenCV (Open Computer Vision)에서 제공하는 얼굴 인식 알고리즘에서는 Haar 특징(Haar feature)들과 대상 영상의 정합 과정인 Haar 매칭 (Haar Matching)을 통하여 얼굴을 검출하는데, 이때 Haar 특징들은 정면 얼굴로 구성된 훈련 영상을 통해 학습된다. 따라서 OpenCV의 얼굴 검출 방법은 정면 얼굴에 대해서는 높은 얼굴 검출율을 보이지만, 정면을 응시하지 않거나 얼굴의 형태가 변형된 경우에는 얼굴을 정확하게 검출하지 못하는 경우가 빈번히 발생한다. 본 논문에서는 측면 얼굴 혹은 형태가 변형된 얼굴에서도 컬러 히스토그램의 분포 특성은 유사하다고 가정하고, 히스토그램 패턴 매칭(histogram pattern matching)을 이용한 얼굴 검출 방법을 제안한다. 제안한 방법에서는 Haar 매칭 오류가 발생한 프레임에 대하여, 정확하게 검출된 이전 프레임의 얼굴 영역에 대한 히스토그램 패턴 매칭을 통하여 가장 유사한 히스토그램 분포를 갖는 영역을 얼굴로 인식한다. 제안한 방법의 얼굴 검출 알고리즘의 성능을 평가하기 위한 모의실험에서 제안한 얼굴 검출 방법이 OpenCV보다 얼굴 검출율이 8% 정도 향상됨을 확인하였다.
3D 프린팅은 최근 다양한 분야에서 활용 되고 있다. 다양한 활용 분야 중 사람의 얼굴을 3D 프린팅을 위해서는 먼저 3D 얼굴 데이터를 생성해야 한다. 3D 얼굴 데이터 획득을 위해 레이저 스캐너 등이 활용되고 있으나 스캔 중에 사람이 움직이면 안 되는 제약이 있다. 본 논문에서는 단일 영상 기반의 3D 얼굴 모델링 방법과 생성된 3D 얼굴을 가상 성형 등에 쓰일 수 있도록 얼굴 변형 시스템을 제안한다. 3D 얼굴 데이터 생성을 위해 3D 얼굴 데이터베이스로부터 특징점들을 정의하였다. 단일 얼굴 영상으로부터 얼굴을 특징점을 추출 한 후 3D 얼굴 데이터베이스로부터 정의된 3D 얼굴 특징점과 대응하여 입력 얼굴 영상의 3D 얼굴을 생성한다. 3D 얼굴 생성 후에 가상 성형 등의 용도를 위해 얼굴 변형 부분을 적용하였다.
본 논문에서는 색상 정보와 변형 모델을 이용한 얼굴 영역 및 얼굴의 특징 영역의 자동 검출 방법을 제시한다. 영상으로부터 획득할 수 있는 정보 중 가장 빠르고 쉽게 얻을 수 있는 정보가 색상 정보이며, 색상정보는 사물을 판단함에 있어서 가장 효율적이면서 컴퓨터의 계산량을 줄일 수 있다는 장점을 갖고 있기 때문에 얼굴 영역 검출 방법으로 많이 이용되고 있다. 본 연구에서는 얼굴영역 및 얼굴 특성 추출함에 있어 컬러모델 사용 시 외부 조명의 영향을 줄여주는 조명 보정 방법을 제시하고, 조명 보정에 의해 평활화 된 YCbCr 색상모델에 적용하여 각 성분 특성을 고려한 얼굴영역 및 얼굴의 특성 영역에 해당하는 후보 영역을 검출하는 방법을 제시한다. 검출된 얼굴후보 영역 및 특성 영역은 가변 모델인 동적 윤곽선 모델의 초기 값으로 자동 적용되어 윤곽선 모델 적용 시 문제점가운데 하나인 초기 값 설정문제를 해결함과 동시에 얼굴 및 얼굴 특징 정보의 정확한 윤곽선을 추출하는데 사용된다. 실험 결과 제시된 방법을 적용한 결과 빠르고 효과적으로 얼굴 및 특성 영역을 검출 할 수 있음을 입증 할 수 있었다. 이상에서 추출된 얼굴의 특성정보는 차후 얼굴 인식 및 얼굴 특성을 설명하는 얼굴 특성 서술자로 사용될 수 있다.
영상 워핑은 입력 영상을 주어진 조건에 적합하게 변형하는 기술로, 최근 영화나 애니메이션 분야에서 캐릭터의 얼굴 형상을 변형하는데 활용되고 있다. 얼굴 특징을 기반으로 형상을 변형하는 워핑 방법 가운데 하나인 메쉬 워핑은 입력 영상에서 눈, 코, 입 주변의 사각형 모양의 메쉬 그룹을 형성하여 1:1정합시킴으로써 워핑 영상을 생성하는 방법이다. 이는 메쉬 제어점 좌표에 오차가 있거나 작은 면적의 메쉬로 세분화되어 생성된 경우 메쉬들의 경계 선분에서 결과 영상이 일그러지는 문제점이 있다. 본 연구는 얼굴의 자연스러운 워핑 영상을 생성하는 과정에서 오류 발생을 최소로 하며 정확한 결과를 적은 연산량과 시간에 처리하기 위해 삼각형기반의 영상 보간 기법을 제안한다. 우선 얼굴을 대표하는 특징점들을 찾고 이들을 연결하여 기본 삼각형 메쉬를 구성한다. 제안하는 방법은 기존의 메쉬 워핑과 비교하여 연산 처리량과 시간은 단축되면서 워핑 과정에서의 오류 발생을 줄일 수 있음을 실험으로 보인다.
본 논문에서는 변형 Otsu 이진화 방법, Hu 모멘트 및 선형 판별 분석(linear discriminant analysis, LDA)를 기반으로 밝기, 명암도, 크기, 회전 위치 변화에 강인한 얼굴 인식 방법을 제안하고자 한다. 제안한 변형 Otsu 이진화를 사용하여 밝기 및 명암도에 불변한 이진 영상들을 만든다. 그런 후 생성된 얼굴 영상의 경계 영상 및 다단계 이진영상으로부터 총 17개의 Hu 모멘트를 계산한 다음 LDA 방법을 적용하여 최종 특징 벡터를 추출한다. 특히 제안하는 얼굴 인식 방법은 Hu 모멘트를 이용함으로써 크기, 회전 및 위치 변화에도 강인한 특성을 갖고 있다. Olivetti research laboratory (ORL) 데이터베이스와 AR 데이터베이스의 총 100명의 얼굴 영상에 대해 기존의 주요 성문 분석(Principal component analysis, PCA) 방법 및 PCA와 LDA를 결합한 얼굴 인식 방법과 비교 실험한 결과, 제안한 얼굴 인식 방법은 대체적으로 기존 방법보다 뛰어난 인식 성능을 보였다.
사용자에게 친근감 있는 인터페이스를 제공하는 얼굴 모델링에 대한 연구가 활발히 진행 중이다. 본 논문에서는 기존 방법인 3차원 스캐너가 카메라를 이용하지 않고 얼굴의 정면상과 측면상의 사진을 이용하여 크기와 배경의 복잡성에 상관없이 일반적인 특징점을 추출하여 삼각형 메쉬로 구성된 표준 모델을 생성하고 이를 이용해서 3차원 얼굴의 형태를 생성하는 시스템을 제안한다. 추출된 특징점은 각개인의 얼굴 형태에 맞게 변형함으로서 좀더 현실적인 3차원 얼굴 모델링을 제공한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.