• Title/Summary/Keyword: 얼굴영역

Search Result 957, Processing Time 0.025 seconds

A Study on New RGB Space Transformation for Face Detection (새로운 RGB 영역 변환을 이용한 효과적인 얼굴 검출에 관한 연구)

  • 정원석;이형지;정재호
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.453-456
    • /
    • 2000
  • 본 논문에서는 색상정보를 이용한 얼굴 검출 알고리즘에 대해 소개하고자 한다. 여러 개의 얼굴 검출에 적용되는 이 알고리즘은 피부색의 학습 과정과 입력영상에 대한 얼굴 검출 과정으로 크게 두 가지로 나눌 수 있다. 특히 본 연구에서는 피부색이 본 논문에서 제안한 새로운 RGB 영역에서 직선을 이루는 특징을 이용하여 학습 data를 구성한다. 이렇게 구성된 data를 입력영상에 적용함으로써 1차 얼굴 후보영역을 결정한다. 그런 후 1차 후보영역을 세로방향과 가로방향으로 투영시킴으로써 최종 얼굴 영역을 찾아낸다. 실험을 통해 이 알고리즘은 기존의 색상정보를 이용한 얼굴검출 방법에 비해 얼굴 개수에 상관없이 높은 검출 성공률을 보여주었다.

  • PDF

A Study on Face Detection Using CrCb Model by Intensity (명암도에 따른 CrCb 정보를 이용한 얼굴 검출에 관한 연구)

  • 남미영;이필규
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.85-88
    • /
    • 2002
  • 얼굴 영역을 검출하는 데 있어서 가장 기본적이면서도 중요한 정보가 컬러 정보이다. 하지만 컬러정보는 사용하는 컬러모델링 및 얼굴의 Skin Color를 평가하는 범위를 어떻게 정의하느냐에 따라 얼굴의 검출 성능에 많은 영향을 끼친다. 본 논문에서는 얼굴 영역을 검출하기 위한 첫 번째 조건으로 Skin color영역을 색상값과 다양한 데이터로부터 명암도에 따른 Skin color의 분포와 비율을 학습 함으로써 Skin color 영역을 검출 성능을 높이며, 퍼지 아트 알고리즘을 이용하여 얼굴과 비얼굴 데이터에 인증함으로써 얼굴 영역의 검출 성능을 높인다.

  • PDF

Component-fusion for face detection in color images (컬러 영상에서 구성요소 융합을 이용한 얼굴 검출)

  • 이주현;이윤미;손시영;이경미
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.790-792
    • /
    • 2004
  • 본 논문에서는 컬러 영상에서 얼굴 구성요소 융합을 이용하여 얼굴 영역을 검출하는 방법을 제시한다. 먼저 광범위한 조명 환경과 인종을 포괄하는 피부색의 범위를 이용해 피부 영역을 검출하고. 영역 그룹화로 후보 얼굴 영역을 찾는다. 색 정보를 이용해 얼굴 구성요소(눈, 입)를 검출한 후, 검출된 구성요소와 구성요소 간의 관계를 융합하여 주어진 영상에서 얼굴 영역을 검출한다. 본 논문이 제안하는 구성요소 융합 방법은 구성요소 간의 관계에 대한 불확실성을 고려하고 있어, 구성요소간의 최적의 조합으로 얼굴의 크기와 포즈, 조명의 변화가 어느 정도 허용된 얼굴 검출이 가능하다.

  • PDF

Component and Knowledge Based Face Detection (얼굴 요소와 지식 기반 방법을 이용한 얼굴 검출)

  • 김진모;변혜란
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.733-735
    • /
    • 2004
  • 본 논문에서는 얼굴 요소 기반의 얼굴 검출을 설명한다. 기존의 얼굴 전체 영역을 사용한 검출의 문제점과 얼굴 요소 기반의 얼굴 검출 방법의 차이점을 제시하며, 얼굴 전체 영역을 사용한 검출 방법에서 해결하기 어려운 문제점을 해결 하고자 한다. 얼굴 요소 기반의 얼굴 검출 방법은 Support Vector Machines (SVM)을 사용한다. 이 SVM을 사용하여 독립적으로 얼굴 요소를 찾으며, 각각의 얼굴 요소의 위치 정보를 이용한 지식 기반 방법을 이용하여 최종 얼굴 영역을 판별해 낸다 실험 결과에서 알 수 있듯이 얼굴 요소 기반 알고리즘은 얼굴 요소 가려짐 및 얼굴 요소의 유실에 강인함을 볼 수 있다.

  • PDF

Real-time Face Tracking Using Multi Color Model and Face Gradient Correction Algorithm (다중 컬러 모델을 이용한 실시간 얼굴 추적 및 기울기 보정 알고리즘)

  • 석영수;이응주
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.488-491
    • /
    • 2003
  • 본 논문에서는 실시간 CCD 카메라 입력 영상으로부터 다중 컬러 정보를 이용하여 얼굴 영역을 검출 및 추적하고 기울어진 얼굴을 보정하는 알고리즘을 제안하였다. 제안한 알고리즘은 먼저 획득된 RGB 영상에서 YCbCr컬러 모델과 YIQ컬러 모델로 변환한 후 Cr성분과 I성분을 추출하여 얼굴 피부색을 검출, 얼굴 영역 추출에 사용하였다. 또한 추출된 얼굴 후보 영역에서 수평, 수직 투영(Projection)정보로부터 최종 얼굴 영역으로 검출한 다음 검출된 얼굴 중심 좌표와 이전에 검출된 얼굴 중심 좌표 값을 유클리드언 거리로 얼굴을 추적하였으며 검출된 얼굴로부터 레이블링(Labeling)기법으로 눈 특징자를 검출, 눈의 기울기 각도를 보정함으로써 얼굴 기울기를 보정하였다. 제안한 얼굴 추적 및 기울기 보정 알고리즘을 사용하여 실험한 결과 다중 색상 정보를 사용함으로써 주위환경 변화에 강인하게 실시간 얼굴 영역 김출 및 추적이 가능하였고, 기울어진 얼굴 영상을 자동 보정함으로써 인식에 용이하였다.

  • PDF

A New Face Detection Method using Combined Features of Color and Edge under the illumination Variance (컬러와 에지정보를 결합한 조명변화에 강인한 얼굴영역 검출방법)

  • 지은미;윤호섭;이상호
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.809-817
    • /
    • 2002
  • This paper describes a new face detection method that is a pre-processing algorithm for on-line face recognition. To complement the weakness of using only edge or rotor features from previous face detection method, we propose the two types of face detection method. The one is a combined method with edge and color features and the other is a center area color sampling method. To prevent connecting the people's face area and the background area, which have same colors, we propose a new adaptive edge detection algorithm firstly. The adaptive edge detection algorithm is robust to illumination variance so that it extracts lots of edges and breakouts edges steadily in border between background and face areas. Because of strong edge detection, face area appears one or multi regions. We can merge these isolated regions using color information and get the final face area as a MBR (Minimum Bounding Rectangle) form. If the size of final face area is under or upper threshold, color sampling method in center area from input image is used to detect new face area. To evaluate the proposed method, we have experimented with 2,100 face images. A high face detection rate of 96.3% has been obtained.

SVM Based Facial Expression Recognition for Expression Control of an Avatar in Real Time (실시간 아바타 표정 제어를 위한 SVM 기반 실시간 얼굴표정 인식)

  • Shin, Ki-Han;Chun, Jun-Chul;Min, Kyong-Pil
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.1057-1062
    • /
    • 2007
  • 얼굴표정 인식은 심리학 연구, 얼굴 애니메이션 합성, 로봇공학, HCI(Human Computer Interaction) 등 다양한 분야에서 중요성이 증가하고 있다. 얼굴표정은 사람의 감정 표현, 관심의 정도와 같은 사회적 상호작용에 있어서 중요한 정보를 제공한다. 얼굴표정 인식은 크게 정지영상을 이용한 방법과 동영상을 이용한 방법으로 나눌 수 있다. 정지영상을 이용할 경우에는 처리량이 적어 속도가 빠르다는 장점이 있지만 얼굴의 변화가 클 경우 매칭, 정합에 의한 인식이 어렵다는 단점이 있다. 동영상을 이용한 얼굴표정 인식 방법은 신경망, Optical Flow, HMM(Hidden Markov Models) 등의 방법을 이용하여 사용자의 표정 변화를 연속적으로 처리할 수 있어 실시간으로 컴퓨터와의 상호작용에 유용하다. 그러나 정지영상에 비해 처리량이 많고 학습이나 데이터베이스 구축을 위한 많은 데이터가 필요하다는 단점이 있다. 본 논문에서 제안하는 실시간 얼굴표정 인식 시스템은 얼굴영역 검출, 얼굴 특징 검출, 얼굴표정 분류, 아바타 제어의 네 가지 과정으로 구성된다. 웹캠을 통하여 입력된 얼굴영상에 대하여 정확한 얼굴영역을 검출하기 위하여 히스토그램 평활화와 참조 화이트(Reference White) 기법을 적용, HT 컬러모델과 PCA(Principle Component Analysis) 변환을 이용하여 얼굴영역을 검출한다. 검출된 얼굴영역에서 얼굴의 기하학적 정보를 이용하여 얼굴의 특징요소의 후보영역을 결정하고 각 특징점들에 대한 템플릿 매칭과 에지를 검출하여 얼굴표정 인식에 필요한 특징을 추출한다. 각각의 검출된 특징점들에 대하여 Optical Flow알고리즘을 적용한 움직임 정보로부터 특징 벡터를 획득한다. 이렇게 획득한 특징 벡터를 SVM(Support Vector Machine)을 이용하여 얼굴표정을 분류하였으며 추출된 얼굴의 특징에 의하여 인식된 얼굴표정을 아바타로 표현하였다.

  • PDF

Definition of Optimal Face Region for Face Recognition with Phase-Only Correlation (위상 한정 상관법으로 얼굴을 인식하기 위한 최적 얼굴 영역의 정의)

  • Lee, Choong-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.3
    • /
    • pp.150-155
    • /
    • 2012
  • POC(Phase-Only Correlation) is a useful method that can conduct face recognition without using feature extraction or eigenface, but uses Fourier transformation for square areas. In this paper, we propose an effective face area to increase the performance of face recognition using POC. Specifically, three areas are experimented for POC. The frist area is the square area that includes head and space. The second area is the square area from ear to ear horizontally and from the end of chin to the forehead vertically. The third area is the square area from the line under the lips to the forehead vertically and from cheek to cheek horizontally. Experimental results show that the second face area has the best advantage among the three types of areas to define the threshold for POC.

Face Region Detection and Verification using both WPA and Spatially Restricted Statistic (공간 제약 특성과 WPA를 이용한 얼굴 영역 검출 및 검증 방법)

  • Song, Ho-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.542-548
    • /
    • 2006
  • In this paper, we propose a face region detection/verification method using wavelet packet analysis and structural statistic for frontal human color image. The method extracts skin color lesions from input images, first. and then applies spatial restrictive conditions to the region, and determines whether the region is face candidate region or not. In second step, we find eye region in the face candidate region using structural statistic for standard korean faces. And in last step, the face region is verified via wavelet packet analysis if the face torture were satisfied to normal texture conditions.

Design and Implementation of Face Tracking system using region-based approach (영역-기반 접근방법을 이용한 얼굴 추적시스템 설계 및 구현)

  • Song, Bok-Deuk;Lee, Ji-Hyun;Jang, Won-Dal;Yun, Tae-Soo;Yang, Hwang-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.567-570
    • /
    • 2003
  • 본 논문에서는 연속영상 속에 있는 얼굴영역을 칼만 필터를 이용하여 추적하는 방법을 제안한다. 제안된 방법은 영역-기반접근(region-based approach)방법인 워터쉐드 알고리즘을 이용하여 초기 영역 분할 작업을 한 후 얼굴칼라 모델과의 매칭작업을 통해서 얼굴영역을 찾아내는 얼굴검출 단계와 추출된 얼굴영역의 칼라정보를 칼만 필터의 입력으로 하여 얼굴을 추적하는 단계로 구성되어 있다. 실험결과를 통하여 제안된 방법이 배경이 복잡한 영상에 대해서도 효율적으로 얼굴을 추적할 수 있음을 보인다.

  • PDF