최근 미디어의 발전으로 빠른 속도로 많은 양의 사람들의 얼굴이 포함된 사진, 동영상들이 인터넷에 업로드 되고 있다. 이러한 현상에 맞춰 인공지능을 활용한 얼굴 인식 기술의 놀라운 발전이 있었으나, 대규모 데이터셋에서 임의의 인물을 검색하는 경우에서는 연산량과 저장공간의 부담이 존재한다. 특히, 인터넷에 존재하는 수많은 불법 촬영물에서 피해자를 정확하고 신속하게 검색하기 위해서는 효율적인 얼굴 검색 시스템이 필요하다. 따라서, 본 논문은 얼굴 특징 추출과 클러스터링을 활용하여 방대한 양의 불법 촬영물 셋에서 피해자 동영상을 효율적으로 검색할 수 있는 기법을 제안한다. 불법 촬영물 동영상 검색 실험 환경을 만들기 위해 YouTube Faces [1] 데이터셋으로 유사 동영상 셋을 만들고 이 환경에서 실험을 진행한다. 얼굴 특징 추출 모델은 ResNet100 네트워크를 CosFace 손실함수와 Glint360K 데이터셋으로 학습시킨 모델 [2]을 사용한다. 추출된 얼굴 특징들을 HAC(Hierarchical Agglomerative Clustering) 알고리즘으로 클러스터링 한 후, 클러스터 대푯값을 통해 얼굴 검색 실험을 했을 때의 실험 결과를 분석한다.
본 논문에서 얼굴 검출의 목적은 화상회의나 현금 자동 인출기 같이 복잡한 배경에서 압축이나 인식, 인증 등의 처리를 위해서 한 사람의 얼굴을 검출하는 데에 있다. 본 논문에서는 이러한 얼굴 검출 방법으로 스테레오와 컬러 정보를 이용한 방법을 제안하고자 한다. 제안된 방법은 크게 두 단계로 나눌 수 있는데 첫 번째 단계는 스테레오 영상으로 두개 영상의 차영상을 구해 깊이 정보를 이용하여 얼굴의 영역이 될만한 후보를 추출한다. 두번째 단계로는 후보들중에 크기가 큰 영역의 중심점에 영역성장을 하여서 얼굴 영역을 추출한다. 제안한 알고리즘을 사용한 결과 얼굴의 회전 및 표정 변화 등에 관계없이 얼굴검출을 하였다.
MLP는 뛰어난 학습능력으로 인하여 많은 분야에 성공적으로 적용되고 있다. 그러나, 학습 방법으로서 최급경사법에 근거한 오차역전파 알고리즘을 적용하기 때문에 학습시간이 오래 걸리는 단점이 있다. 또한 입력차원의 크기가 크거나 클래스간 학습데이터의 유사성이 클 경우 최적의 파라미터를 구하는데는 한계가 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 LDA와 local MLP을 이용한 새로운 얼굴인식시스템을 제안하고자 한다. 제안된 방법은 우선 LDA 기법에 의해 차원이 축소된 얼굴의 특징벡터를 계산한다. 다음 단계로서 전체 학습영상을 사용하기 보다는 그룹별로 분할된 얼굴영상에 대해 MLP를 수행하므로서 그룹별로 최적인 파라미터를 결정한다. 마지막 단계로 그룹별로 수행된 local MLP를 결합함으로써 전체 얼굴인식 시스템을 구성한다. 제안된 방법의 타당성을 보이기 위해 ORL 얼굴영상을 대상으로 실험한 결과 기존 방법인 PCA나 LDA에 비해 향상된 결과를 보임을 확인할 수 있었다.
최근 컴퓨터 기술의 발전과 함께 임베디드 기기 또한 다양한 기능을 갖추기 시작했다. 본 연구에서는 최근 활발하게 진행되고 있는 영상센서를 사용한 임베디드 기기 등 자원이 적은 기기에서 효율적인 얼굴 추적 방식을 제안한다. 정확한 얼굴을 얻기 위하여 MB-LBP 특징을 사용한 얼굴 검출 방식을 사용했으며, 다음 영상에서 얼굴 객체 추적을 위하여 얼굴 검출시 얼굴 주변 영역(Region of Interest)을 지정하였다. 그리고 얼굴을 검출을 못하는 영상에서는 기존의 객체 추적 방식인 CAM-Shift를 사용해 객체를 추적해 객체 정보의 손실 없이 정보를 유지 할 수 있도록 하였다. 본 연구는 기존 연구와의 비교를 통하여 객체 추적 시스템의 정확성과 빠른 성능을 확인하였다.
본 논문에서는 칼라 영상으로부터 피부색 정보 및 모멘트를 이용하여 눈 영역 및 얼굴 영역을 검출하는 알고리즘을 제안한다. 제안한 알고리즘은 눈 영역을 추출함으로써 보다 정확한 얼굴 영역을 검출할 수 있다. 이를 위해 먼저 입력된 칼라 영상의 피부색 정보를 기반으로 추출한 영역으로부터 레이블 영역의 면적과 크기 정보를 이용해 1차, 2차 얼굴 후보 영역을 선택하고 선택된 얼굴 후보 영역간의 기울기 모멘트를 계산하여 3차 얼굴 후보 영역을 추출한다. 또한 추출한 3차 후보 영역으로부터 레이블 영역의 크기 및 구조적 관계를 고려하여 영역 내에서의 눈의 위치를 검출한다. 따라서 제안한 방법은 눈의 기울기 관계를 이용함으로써 얼굴의 크기와 얼굴이 좌우로 기울어진 영상에 대하여 강인한 얼굴 검출 능력을 보인다.
본 논문에서는 복합 컬러모델과 얼굴특정 정보를 이용하여 실시간으로 얼굴영역을 검출 추적하고 기울어진 얼굴영상을 보정하는 시스템을 제안하였다. 제안한 시스템은 YCbCr과 YIQ 컬러모텔을 사용하여 얼굴 후보영역을 검출하였다. 얼굴 후보영역에서 수평 수직 투영기법을 사용하여 얼굴을 검출하고 하우스도르프 정합 방법을 사용하여 얼굴을 추적하였다. 또한 검출된 얼굴영상으로부터 눈 특징자의 기울기 정보를 보정함으로써 얼굴 기울기를 보정하였다. 실험결과 제안한 알고리즘이 주위환경 변화가 있는 실시간 얼굴검출과 추적 및 기울어진 얼굴인식에 강인하였다. 실험에서는 110개의 테스트 얼굴 영상을 사용하여 좋은 성능결과를 얻었다. 실험결과 얼굴검출과 얼굴추적율은 각각 92.27%와 92.70%를 나타내었고 얼굴 정보들로부터 90.0%의 얼굴인식율을 얻었다.
얼굴을 마주보며 인간끼리 대화하는 것처럼 인간과 자연스럽게 대화할 수 있는 휴먼인터페이스를 실현하기 위해서는 임성의 합성과 얼굴영상의 합성이 필요하다. 본 논문은 얼굴영상의 합성을 대상으로 한다. 얼굴영상의 합성에서는 표정변화와 입모양의 변화를 3차원적으로 실현하기 위하여 얼굴의 3차원 형상모델을 이용한다. 얼굴의 3차원 모델을 얼굴 근육의 움직임에 따라 변형하므로서 다양한 얼굴표정과 음절에 어울리는 입모양을 합성한다. 우리말에서 자모의 결합으로 조합가능한 음절은 14,364자에 이른다. 이 음절에 대한 입모양의 대부분은 모음에 따라 형성되고, 일부가 자음에 따라 달라진다. 그러므로, 음절에 어울리는 입모양의 변형규칙을 정하기 위해, 이들을 모두 조사하여 모든 음절을 대표할 수 있는 입모양패턴을 모음과 자음에 따란 분류한다. 그 결과, 자음에 영향을 받는 2개의 패턴과 모음에 의한 8개의 패턴, 총 10개의 패턴으로 입모양을 분류할 수 있었다. 나아가서, 분류된 입모양패턴의 합성규칙을 얼굴근육의 움직임을 고려하여 정한다. 이와같이 분류된 10개의 입모양패턴으로 모든 음절에 대한 입모양을 합성할 수 있고, 얼굴근육의 움직임을 이용하므로써 다양한 표정을 지으면서 말하는 자연스런 얼굴영상을 합성할 수 있었다.
본 논문에서는 영상의 1차 모멘트와 고유벡터를 이용한 효율적인 얼굴인식 방법을 제안하였다. 여기서 1차 모멘트는 입력되는 얼굴영상의 중심좌표를 계산하는 것으로 이는 영상의 중심이동에 따른 전처리로 인식에 불필요한 배경을 배제시킴으로써 인식성능을 개선하기 위함이다. 고유벡터는 얼굴의 특징인 기저영상으로 주요성분분석을 이용하여 추출하였다. 이는 2차의 통계성을 고려한 중복신호의 제거로 인식성능을 개선하기 위함이다. 제안된 방법을 각각 320*243 픽셀의 60개(15명*4장) 얼굴영상에 적용하여 city-block, Euclidean, 그리고 negative angle의 3가지 거리 척도를 분류척도로 이용하여 실험하였다. 실험결과, 중심이동의 제안된 방법은 전처리과정을 거치지 않는 기존방법보다 45개의 시험영상에서 평균적으로 약 1.6배 정도의 우수한 인식률과 약 3.9배 정도의 정확한 분류가 가능함을 확인하였다. 특히 city-block이 Euclidean 이나 negative angle의 거리척도보다 상대적으로 정확하게 분류함을 알 수 있다.
요즘 감시카메라 시장은 전 세계적으로 이슈가 되고 있다. 감시카메라는 적은 인원으로 많은 장소를 한 눈에 감시할 수 있고, 문제가 발생했을 때, 녹화 저장된 영상을 통해 그 상황을 다시 볼 수 있다. 이렇게 다양한 기능과 편리함으로 우리에게 도움을 주는 감시카메라이지만, 마스크나 선글라스, 또는 여러 가지 잡음에 의해 얼굴 영상의 부분이 훼손되는 상황에서는 신원 확인을 하기가 어렵다. 때문에 가려진 얼굴을 제대로 인식하기 위해 영상 처리 분야에서 얼굴의 가려진 영역을 찾아 그 부분을 재구성하고자 하는 연구가 활발히 진행되고 있다. 이에 본 논문은 기존 PCA 방법을 이용하여 가려진 영역을 찾아내고, PCA를 반복적으로 사용하여 재구성하는 대신 상관관계를 이용하여 얼굴의 가려진 영역을 자동적으로 검출하고 복원하는 방법을 제안한다. 본 논문에서는 두 눈의 중심이 고정되어 있는 BioID 데이터로 상관계수를 구하고 얼굴의 특정 부분을 임의로 가려 실험을 수행하였다. 제안된 방법의 결과는 PCA 방법으로 수행한 결과와 함께 비교되어 원본 영상과의 오류 값이 더 작게 나오는 것을 확인할 수 있었다.
스마트폰, 블랙박스, CCTV 등을 통해 다양하고 방대한 영상 데이터가 발생하고 있다. 그중에서 사람의 얼굴 영상을 통해 개인을 인식 및 식별하고 감정 상태를 분석하려는 다양한 연구가 진행되고 있다. 본 논문에서는 디지털영상처리 분야에서 널리 사용되고 있는 SIFT알고리즘을 이용하여, 얼굴영상에 대한 특징점을 추출하고 이를 기반으로 성별, 나이 및 기초적인 감정 상태를 분류할 수 있는 시스템을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.