• 제목/요약/키워드: 얼굴분류

검색결과 438건 처리시간 0.035초

빠른 얼굴 검출을 이용한 실시간 얼굴 인식 시스템 (A Real-time Face Recognition System using Fast Face Detection)

  • 이호근;정성태
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제32권12호
    • /
    • pp.1247-1259
    • /
    • 2005
  • 본 연구는 웹카메라와 같은 저해상도의 동영상으로부터 실시간 다중 얼굴 인식 시스템을 제안한다. 동영상을 이용한 얼굴 인식 시스템은 크게 얼굴 검출 단계와 얼굴 분류 단계로 나눌 수 있다. 첫째, 얼굴 검출 단계에서는 빠르고 강인한 객체 검출 성능을 가진 AdaBoost를 이용하여 얼굴 후보 영역을 검출하였고, 검출된 얼굴 후보 영역에 대한 주성분을 수행하여 데이타의 크기기 현저히 줄어든 특징 벡터를 구한 다음에 특징 벡터에 대해 SVM 기반 이진 분류를 수행하여 얼굴 후보 영역을 검증하였다. 둘째, 얼굴 분류 단계에는 주성분 분석과 멀티 SVM을 이용하여 각 얼굴들을 분류하였다. 실험 결과 본 논문에서 제안한 방법은 저해상도에서도 높은 얼굴 검출율과 동영상에서 실시간 처리가 가능한 빠른 다중 얼굴 검출과 인식 성능을 보였다. 또한 팬-틸트 기능을 가진 웹카메라를 이용한 자동 추적형 얼굴 인식 시스템을 적용하여 얼굴 검출 성능을 향상시켰고, 얼굴 인식 시스템의 응용으로 무선 On/off 얼굴인식 도어락 시스템을 구현하였다.

Cascade 안면 검출기와 컨볼루셔널 신경망을 이용한 얼굴 분류 (Face Classification Using Cascade Facial Detection and Convolutional Neural Network)

  • 유제훈;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제26권1호
    • /
    • pp.70-75
    • /
    • 2016
  • 머신비전을 사용하여 사람의 얼굴을 인식하는 다양한 연구가 진행되고 있다. 머신비전은 기계에 시각을 부여하여 이미지를 분류 혹은 분석하는 기술을 의미한다. 본 논문에서는 이러한 머신비전 기술을 적용한 얼굴을 분류하는 알고리즘을 제안한다. 이 얼굴 분류 알고리즘을 구현하기 위해 컨볼루셔널 신경망(Convolution neural network)과 Cascade 안면 검출기를 사용하였고, 피험자들의 얼굴을 분류하였다. 구현한 얼굴 분류 알고리즘의 학습을 위해 한 피험자 당 이미지 2,000장, 3,000장, 40,00장을 10회와 20회 컨볼루셔널 신경망에 각각 반복하여 학습과 분류를 진행하였고, 학습된 컨볼루셔널 신경망과 얼굴 분류 알고리즘의 실효성을 테스트하기 위해 약 6,000장의 이미지를 분류하였다. 또한 USB 카메라 영상을 실험 데이터로 입력받아 실시간으로 얼굴을 검출하고 분류하는 시스템을 구현하였다.

고유얼굴에 의한 얼굴인식 (Face Recognition using Eigenface)

  • 박중조;김경민
    • 융합신호처리학회논문지
    • /
    • 제2권2호
    • /
    • pp.1-6
    • /
    • 2001
  • 고유얼굴 방법에 의한 얼굴인식은 얼굴 표정의 변화에 둔감한 유용한 인식기법이나 인식률이 낮아 지속적인 연구가 필요한 실정이다. 본 논문에서는 고유얼굴 특징을 이용한 얼굴인식에 있어서 인식률 개선을 위한 효과적인 방안을 제시한다. 이를 위해 본 연구에서는 고유얼굴 특징에 대해 세 종류의 분류기-단일원형 분류기, 최소거리 분류기, 신경회로망 분류기-를 사용하여 그 성능을 평가하고 분석함으로써 고유얼굴 특징의 분포 특성을 고찰하고, 분류기 및 학습용 샘플 영상의 선정이 인식률 제고에 큰 영향을 미침을 보인다. ORL 얼굴영상 데이터베이스를 사용하여 실험한 결과 최소거리 분류기가 가장 좋은 인식률을 나타내었으며, 학습용 샘플영상의 선정과 최소거리 분류기에 의해 91.0%의 인식률을 달성하였다.

  • PDF

얼굴 인식과 SNS 정보를 이용한 모바일 기기에서 사진 자동 분류 및 검색 (Automatic Classification and Search in Mobile Devices using Face Recognition and SNS information)

  • 최재용;이수안;김진호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2012년도 한국컴퓨터종합학술대회논문집 Vol.39 No.1(D)
    • /
    • pp.152-154
    • /
    • 2012
  • 본 논문에서는 얼굴 인식 기술과 SNS 정보를 이용하여 사람의 얼굴을 기준으로 사진들을 효과적으로 분류하고 검색할 수 있는 시스템을 개발하였다. 얼굴 인식 기술을 이용하여 촬영된 사진의 분석을 통해 얼굴로부터 나이, 성별, 안경 착용 유무, 웃는 얼굴 판단 등의 의미적인 정보를 추출한다. 또한, 얼굴 인식을 통해 얻은 SNS 정보에서는 이름, 생일, 학력, 직업, 고향, 관심 분야, 종교 등의 개인적인 정보를 추출 할 수 있다. 추출한 정보를 이용한 효과적인 사진 분류 및 검색을 통해 사용자의 편의를 극대화하였다. 본 논문에서는 구글 안드로이드 기반의 스마트폰에서 제안한 사진 자동 분류 및 검색 시스템을 구현하였다.

동양 관상학을 적용한 성격별 얼굴 설계 시스템에 관한 연구 (A Study on Facial Visualization System based on one's Personality applied with the Oriental Physiognomy)

  • 강선희;김효동;이경원
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 2부
    • /
    • pp.346-357
    • /
    • 2008
  • 관상학(Physiognomy)이란 사람의 얼굴을 보고 그의 운명, 성격, 수명 따위를 판단하는 방법을 연구하는 학문을 말한다. 이 논문에서 언급하는 관상학은 동양에서 말하는 관상학, 특히 얼굴의 부분적 특성이나 전체적인 조화를 통해 성격과 운영을 예측하는 학문을 의미한다. 이 연구는 동양 관상학을 적용한 성격별 얼굴 설계 시스템 구축에 관한 것으로, 첫째, 보편적인 성격 분류를 위해 MBTI에서 다루는 성격 어휘 161개를 군집분석을 통해 39개의 대표 어휘로 추출하였다. 추출된 대표 성격 어휘의 의미상 거리를 나타내기 위하여 서베이를 통해 얻은 데이터를 다차원 척도법을 통해 2차원 공간상에 성격 어휘의 관계를 분석하였다. 둘째, 얼굴 시각화를 위해 먼저 얼굴의 형태적 특성을 결정짓는 요소를 크게 얼굴형, 눈, 코, 입, 이마, 눈썹으로 분류하고, 분류된 6가지 얼굴 형태의 29가지 하위요소 별 성격을 한국인의 얼굴 특성을 기준으로 관상학적 정리 및 숫자형식 코드화를 하였다. 추출된 대표 성격 어휘별 얼굴 요소의 형태를 앞서 정리된 코드에 따라 하나의 얼굴 형태로 조합하여 39가지 얼굴을 시각화 하여 마지막으로, 성격별 얼굴 설계 시스템 'FACE'를 제작하였다. 이 연구는 사람의 성격 특성에 따라 그에 맞는 얼굴 형태를 구현하는 시스템을 제작하여 일반 사용자 뿐 아니라 애니메이션 캐릭터 개발자에게 객관적인 도움을 줄 수 있으며 또한 예로부터 내려오는 관상학의 적용 범위를 넓힐 수 있는 가능성을 보여주었다고 할 수 있다.

  • PDF

얼굴인식을 위해 효과적인 차원축소 방법을 사용한 특징추출 (Face Feature Extraction Using the Efficient Dimensionality Reduction Method)

  • 손병준;김귀주;이일병
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.761-764
    • /
    • 2004
  • 얼굴 데이터를 사용하는 인식 시스템에서 특징 벡터의 차원은 일반적으로 매우 크다. 패턴인식에서 차원 축소는 중요한 문제로서, 효과적인 얼굴 인식을 위한 특징 벡터의 차원 축소는 필수적이라 할 수 있다. 본 논문에서는 획득된 얼굴 데이터로부터 저 차원의 강건한 특징을 얻기 위하여 웨이블릿을 사용하고, 식별력 있는 특징을 얻기 위하여 direct linear discriminant analysis를 사용하였다. Direct linear discriminant analysis 방법을 사용하기 이전에 웨이블릿을 사용함으로써 계산 복잡도를 줄여줄 뿐만 아니라 식별력을 높여주고 효과적으로 얼굴 데이터의 차원을 축소할 수 있음을 보여 준다. 얼굴의 패턴정합을 위해서는 최근접 평균 분류기(Nearest Mean Classifier)를 사용하였으며, 최근접 평균 분류기를 사용함으로써 분류를 위한 시간을 최소화하였다. 본 논문에서 인간의 얼굴인식을 위해 제시한 방법이 얼굴패턴을 표현하는 효과적인 방법이며, 시간 및 공간의 절약이라는 측면에서 유리하다는 것을 보여준다.

  • PDF

LDA 융합모델과 최소거리패턴분류법을 이용한 얼굴 표정 인식 연구 (A Study on Face Expression Recognition using LDA Mixture Model and Nearest Neighbor Pattern Classification)

  • 노종흔;백영현;문성룡;강영진
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.167-170
    • /
    • 2006
  • 본 논문은 선형분류기인 LDA 융합모델과 최소거리패턴분류법을 이용한 얼굴표정인식 알고리즘 연구에 관한 것이다. 제안된 알고리즘은 얼굴 표정을 인식하기 위해 두 단계의 특징 추출과정과 인식단계를 거치게 된다. 먼저 특징추출 단계에서는 얼굴 표정이 담긴 영상을 PCA를 이용해 고차원에서 저차원의 공간으로 변환한 후, LDA 이용해 특징벡터를 클래스 별로 나누어 분류한다. 다음 단계로 LDA융합모델을 통해 계산된 특징벡터에 최소거리패턴분류법을 적용함으로서 얼굴 표정을 인식한다. 제안된 알고리즘은 6가지 기본 감정(기쁨, 화남, 놀람, 공포, 슬픔, 혐오)으로 구성된 데이터베이스를 이용해 실험한 결과, 기존알고리즘에 비해 향상된 인식률과 특정 표정에 관계없이 고른 인식률을 보임을 확인하였다.

  • PDF

얼굴 표정 인식 기술

  • 허경무;강수민
    • 제어로봇시스템학회지
    • /
    • 제20권2호
    • /
    • pp.39-45
    • /
    • 2014
  • 얼굴 표정 인식은 인간 중심의 human-machine 인터페이스의 가장 중요한 요소 중 하나이다. 현재의 얼굴 표정 인식 기술은 주로 얼굴 영상을 이용하여 특징을 추출하고 이를 미리 학습시킨 인식 모델을 통하여 각 감정의 범주로 분류한다. 본 논문에서는 이러한 얼굴 표정 인식 기술에 사용되는 표정 특징 추출 기법과 표정 분류 기법을 설명하고, 각 기법에서 많이 사용되고 있는 방법들을 간략히 정리한다. 또한 각 기법의 특징들을 나열하였다. 또한 실제적 응용을 위해서 고려해야할 사항들에 대하여 제시하였다. 얼굴 표정 인식 기술은 인간 중심의 human-machine 인터페이스를 제공할 뿐만 아니라 로봇 분야에서도 활용 가능할 것으로 전망한다.

이상치 억제를 통한 얼굴의 표정 조작 (Facial Expression Manipulation with Outlier Suppression)

  • 김성호;송병철
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.129-131
    • /
    • 2022
  • 얼굴 표정 데이터셋에는 특정 감정 부류로 분류하기 어려운 이상치들이 존재한다. 이러한 이상치들은 얼굴 표정 인식과 더불어 얼굴 표정 조작의 성능을 저하시키는 원인 중 하나이다. 따라서, 본 논문에서는 이상치 억제를 통한 개선된 얼굴 표정 조작 프레임워크를 제안한다. 우리는 이상치 억제를 위해 의미론적 속성 분류 측면에서 우수한 성능을 보여주는 CLIP 을 활용하였다. 우리는 정성적인 비교를 통해 기존의 얼굴 표정 조작 기법보다 개선된 성능을 제시한다.

  • PDF

효과적인 계단식 얼굴 검출을 위한 다중 특징 추출 (Multiple Feature Representation for Efficient Cascaded Face Detection)

  • 소형준;남미영;이필규
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (2)
    • /
    • pp.742-744
    • /
    • 2004
  • 본 논문은 복잡한 배경에서의 얼굴 검출에 있어서 다중 특징 추출 데이터로 학습한 계단식 분류기에 의한 방법을 제안한다 얼굴 검출에서 얼굴의 패턴은 상당히 다양한 영상 표현으로 나타나기 때문에 하나의 특징 추출 방법은 사람의 얼굴을 모델링 하기에는 부족하다. 따라서 여기서는 얼굴의 전체적인 지역적인 특징을 나타내는 Subregion과, 얼굴의 주파수 특성에 따라 좀 더 세밀하고 다양한 속성들을 나타내는 Haar 웨이블릿 변환을 이용하여 다중으로 특징을 추출하여 효과적인 모델링을 시도하였다. 특징을 추출한 얼굴과 비얼굴의 패턴(pattern)을 구분하기 위해서 패턴들의 통계적인 특성을 이용하여 각 추출방법에 맞게 학습된 Bayesian 분류기를 직렬로 연결하여 사용하였으며 비얼굴은 얼굴과 유사한 비얼굴(face-like nonface) 패턴들을 사용하여 모델링 하였다. 제안한 얼굴 검출 방식의 성능은 MIT-CMU 시험 영상들을 이용하여 평가하였다. 그 결과 한 가지 특징 추출을 사용하는 것 보다 두 가지 특징 추출을 병행한 계단식 구성이 더 정확한 검출 결과를 나타내었다.

  • PDF