• Title/Summary/Keyword: 얼굴검출 및 인식

Search Result 211, Processing Time 0.032 seconds

Implementing Augmented Reality By Using Face Detection, Recognition And Motion Tracking (얼굴 검출과 인식 및 모션추적에 의한 증강현실 구현)

  • Lee, Hee-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.1
    • /
    • pp.97-104
    • /
    • 2012
  • Natural User Interface(NUI) technologies introduce new trends in using devices such as computer and any other electronic devices. In this paper, an augmented reality on a mobile device is implemented by using face detection, recognition and motion tracking. The face detection is obtained by using Viola-Jones algorithm from the images of the front camera. The Eigenface algorithm is employed for face recognition and face motion tracking. The augmented reality is implemented by overlapping the rear camera image and GPS, accelerator sensors' data with the 3D graphic object which is correspond with the recognized face. The algorithms and methods are limited by the mobile device specification such as processing ability and main memory capacity.

A Study on the Vehicle Black Box with Accident Prevention (사고예방이 가능한 차량용 블랙박스 시스템에 관한 연구)

  • Kim, Kang Hyo;Moon, Hae Min;Shin, Ju Hyun;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.4 no.1
    • /
    • pp.39-43
    • /
    • 2015
  • A vehicle black box helps to investigate the cause of accident by recording time, and videos as wells as shock information of the time of accident Lately, intelligent black box with accident prevention as well as existing functions is being studied. This paper proposes an applicable algorithm for vehicle black boxes that prevent any accident likely to occur while a car is parked, like robbery, theft or hit-and-run. Proposed algorithm provides object recognition, face detection and alarm as the object approaches car. Tests on the algorithm prove that it can recognize an approaching object, identify and set alarm if needed, depending on each risk level.

The Implementation of Automatic Compensation Modules for Digital Camera Image by Recognition of the Eye State (눈의 상태 인식을 이용한 디지털 카메라 영상 자동 보정 모듈의 구현)

  • Jeon, Young-Joon;Shin, Hong-Seob;Kim, Jin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.3
    • /
    • pp.162-168
    • /
    • 2013
  • This paper examines the implementation of automatic compensation modules for digital camera image when a person is closing his/her eyes. The modules detect the face and eye region and then recognize the eye state. If the image is taken when a person is closing his/her eyes, the function corrects the eye and produces the image by using the most satisfactory image of the eye state among the past frames stored in the buffer. In order to recognize the face and eye precisely, the pre-process of image correction is carried out using SURF algorithm and Homography method. For the detection of face and eye region, Haar-like feature algorithm is used. To decide whether the eye is open or not, similarity comparison method is used along with template matching of the eye region. The modules are tested in various facial environments and confirmed to effectively correct the images containing faces.

A Design and Implementation of Missing Person Identification System using face Recognition

  • Shin, Jong-Hwan;Park, Chan-Mi;Lee, Heon-Ju;Lee, Seoung-Hyeon;Lee, Jae-Kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.2
    • /
    • pp.19-25
    • /
    • 2021
  • In this paper proposes a method of finding missing persons based on face-recognition technology and deep learning. In this paper, a real-time face-recognition technology was developed, which performs face verification and improves the accuracy of face identification through data fortification for face recognition and convolutional neural network(CNN)-based image learning after the pre-processing of images transmitted from a mobile device. In identifying a missing person's image using the system implemented in this paper, the model that learned both original and blur-processed data performed the best. Further, a model using the pre-learned Noisy Student outperformed the one not using the same, but it has had a limitation of producing high levels of deflection and dispersion.

A New Confidence Measure for Eye Detection Using Pixel Selection (눈 검출에서의 픽셀 선택을 이용한 신뢰 척도)

  • Lee, Yonggeol;Choi, Sang-Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.7
    • /
    • pp.291-296
    • /
    • 2015
  • In this paper, we propose a new confidence measure using pixel selection for eye detection and design a hybrid eye detector. For this, we produce sub-images by applying a pixel selection method to the eye patches and construct the BDA(Biased Discriminant Analysis) feature space for measuring the confidence of the eye detection results. For a hybrid eye detector, we select HFED(Haar-like Feature based Eye Detector) and MFED(MCT Feature based Eye Detector), which are complementary to each other, as basic detectors. For a given image, each basic detector conducts eye detection and the confidence of each result is estimated in the BDA feature space by calculating the distances between the produced eye patches and the mean of positive samples in the training set. Then, the result with higher confidence is adopted as the final eye detection result and is used to the face alignment process for face recognition. The experimental results for various face databases show that the proposed method performs more accurate eye detection and consequently results in better face recognition performance compared with other methods.

Automatic Cast-list Analysis System in Broadcasting Videos (방송 비디오 등장인물 자동 분석 시스템)

  • 김기남;김형준;김회율
    • Journal of Broadcast Engineering
    • /
    • v.9 no.2
    • /
    • pp.164-173
    • /
    • 2004
  • In this paper, we propose a system that can analyze appearance interval of casts by detecting and recognizing casts in broadcasting videos. The cast is one of the most important characteristics in broadcasting videos such as drama and sports. In this paper, we propose the ACAV(Automatic Cast-list Analysis in Videos) system that analyzes cast-list automatically in video. The ACAV system consists of FAGIS(FAce reGIStration) which registers detected faces into the face DB and FACOG(FAce reCOGnition) that analyses the cast-list in video sequence using the face DB. We evaluate performance of the ACAV system by comparing with FaceIt, one of the most well-known commercial systems for the cast-list analysis. The ACAV shows face detection and recognition rates of 84.3% and 75.7% that are about 30% and 27.5% higher than those of FaceIt, respectively. The ACAV system can be applied to mass broadcasting videos management system for broadcasters and video management system of PVR(Personal Video Recorder) and mobile phone for the public.

Implementation of A Safe Driving Assistance System and Doze Detection (졸음 인식과 안전운전 보조시스템 구현)

  • Song, Hyok;Choi, Jin-Mo;Lee, Chul-Dong;Choi, Byeong-Ho;Yoo, Ji-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.30-39
    • /
    • 2012
  • In this paper, a safe driving assistance system is proposed by detecting the status of driver's doze based on face and eye detection. By the level of the fatigue, safe driving system alarms or set the seatbelt on vibration. To reduce the effect of backward light and too strong solar light which cause a decrease of face and eye detection rate and false fatigue detection, post processing techniques like image equalization are used. Haar transform and PCA are used for face detection. By using the statistic of the face and eye structural ratio of normal Koreans, we can reduce the eye candidate area in the face, which results in reduction of the computational load. We also propose a new eye status detection algorithm based on Hough transform and eye width-height ratio, which are used to detect eye's blinking status which decides doze level by measuring the blinking period. The system alarms and operates seatbelt on vibration through controller area network(CAN) when the driver's doze level is detected. In this paper, four algorithms are implemented and proposed algorithm is made based on the probability model and we achieves 84.88% of correct detection rate through indoor and in-car environment experiments. And also we achieves 69.81% of detection rate which is better result than that of other algorithms using IR camera.

Face and Hand Tracking Algorithm for Sign Language Recognition (수화 인식을 위한 얼굴과 손 추적 알고리즘)

  • Park, Ho-Sik;Bae, Cheol-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11C
    • /
    • pp.1071-1076
    • /
    • 2006
  • In this paper, we develop face and hand tracking for sign language recognition system. The system is divided into two stages; the initial and tracking stages. In initial stage, we use the skin feature to localize face and hands of signer. The ellipse model on CbCr space is constructed and used to detect skin color. After the skin regions have been segmented, face and hand blobs are defined by using size and facial feature with the assumption that the movement of face is less than that of hands in this signing scenario. In tracking stage, the motion estimation is applied only hand blobs, in which first and second derivative are used to compute the position of prediction of hands. We observed that there are errors in the value of tracking position between two consecutive frames in which velocity has changed abruptly. To improve the tracking performance, our proposed algorithm compensates the error of tracking position by using adaptive search area to re-compute the hand blobs. The experimental results indicate that our proposed method is able to decrease the prediction error up to 96.87% with negligible increase in computational complexity of up to 4%.

A Simple Way to Find Face Direction (간단한 얼굴 방향성 검출방법)

  • Park Ji-Sook;Ohm Seong-Yong;Jo Hyun-Hee;Chung Min-Gyo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.234-243
    • /
    • 2006
  • The recent rapid development of HCI and surveillance technologies has brought great interests in application systems to process faces. Much of research efforts in these systems has been primarily focused on such areas as face recognition, facial expression analysis and facial feature extraction. However, not many approaches have been reported toward face direction detection. This paper proposes a method to detect the direction of a face using a facial feature called facial triangle, which is formed by two eyebrows and the lower lip. Specifically, based on the single monocular view of the face, the proposed method introduces very simple formulas to estimate the horizontal or vertical rotation angle of the face. The horizontal rotation angle can be calculated by using a ratio between the areas of left and right facial triangles, while the vertical angle can be obtained from a ratio between the base and height of facial triangle. Experimental results showed that our method makes it possible to obtain the horizontal angle within an error tolerance of ${\pm}1.68^{\circ}$, and that it performs better as the magnitude of the vertical rotation angle increases.

  • PDF

Incremental Face Annotation for Open Web Service (개방형 웹 서버스를 위한 증가적 얼굴 어노테이션)

  • Chai, Kwon-Taeg;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.673-682
    • /
    • 2009
  • Recently, photo sharing and publishing based Social Network Sites(SNSs) are increasingly attracting the attention of academic and industry researches. Unlike the face recognition environment addressed by existing works, face annotation problem under SNSs is differentiated in terms of daily updated images database, a limited number of training set and millions of users. Thus, conventional approach may not deal with these problems. In this paper, we proposed a face annotation method for sharing and publishing photographs that contain faces under a social network service using random projection, non-linear regression and representational state transfer. Our experiments on several databases show that the proposed method records an almost constant execution time with comparable accuracy of the PCA-SVM classifier.