• 제목/요약/키워드: 언어 학습 모델

검색결과 845건 처리시간 0.029초

Pseudo Labeling을 통한 한국어 대화 추론 데이터셋 구축 (Constructing Korean Dialogue Natural Inference Dataset through Pseudo Labeling)

  • 이영준;;최윤수;임지희;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.205-209
    • /
    • 2022
  • 페르소나 대화 시스템이 상대방의 개인화된 정보에 일관된 응답을 생성하는 것은 상당히 중요하며, 이를 해결하기 위해 최근에 많은 연구들이 활발히 이루어지고 있다. 그 중, PersonaChat 데이터셋에 대해 수반/중립/모순 관계를 라벨링한 DialoguNLI 데이터셋이 제안되었으며, 일관성 측정, 페르소나 속성 추론 태스크 등 여러 분야에 활용되고 있다. 그러나, 공개적으로 이용가능한 한국어로 된 대화 추론 데이터셋은 없다. 본 연구에서는 한국어로 번역된 페르소나 대화 데이터셋과 한국어 자연어 추론 데이터셋에 학습된 모델을 이용하여 한국어 대화 추론 데이터셋(KorDialogueNLI)를 구축한다. 또한, 사전학습된 언어모델을 학습하여 한국어 대화 추론 모델 베이스라인도 구축한다. 실험을 통해 정확도 및 F1 점수 평가 지표에서 KLUE-RoBERTa 모델을 미세조정(fine-tuning)시킨 모델이 가장 높은 성능을 달성하였다. 코드 및 데이터셋은 https://github.com/passing2961/KorDialogueNLI에 공개한다.

  • PDF

대화 데이터 증강에 기반한 도메인에 강건한 종단형 목적지향 대화모델 (Domain-robust End-to-end Task-oriented Dialogue Model based on Dialogue Data Augmentation)

  • 이기영;권오욱;김영길
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.531-534
    • /
    • 2022
  • 신경망 기반 심층학습 기술은 대화처리 분야에서 대폭적인 성능 개선을 가져왔다. 특히 GPT-2와 같은 대규모 사전학습 언어모델을 백본 네트워크로 하고 특정 도메인 타스크 대화 데이터에 대해서 미세조정 방식으로 생성되는 종단형 대화모델의 경우, 해당 도메인 타스크에 대해서 높은 성능을 내고 있다. 하지만 이런 연구들은 대부분 하나의 도메인에 대해서만 초점을 맞출 뿐 싱글 모델로 두 개 이상의 도메인을 고려하고 있지는 않다. 특히 순차적인 미세 조정은 이전에 학습된 도메인에 대해서는 catastrophic forgetting 문제를 발생시킴으로써 해당 도메인 타스크에 대한 성능 하락이 불가피하다. 본 논문에서는 이러한 문제를 해결하기 위하여 MultiWoz 목적지향 대화 데이터에 오픈 도메인 칫챗 대화턴을 유사도에 기반하여 추가하는 데이터 증강 방식을 통해 사용자 입력 및 문맥에 따라 MultiWoz 목적지향 대화와 오픈 도메인 칫챗 대화를 함께 생성할 수 있도록 하였다. 또한 목적지향 대화와 오픈 도메인 칫챗 대화가 혼합된 대화에서의 시스템 응답 생성 성능을 평가하기 위하여 오픈 도메인 칫챗 대화턴을 수작업으로 추가한 확장된 MultiWoz 평가셋을 구축하였다.

  • PDF

대화 시스템의 개체 생략 복원을 위한 유효 발화문 인식 (Valid Conversation Recognition for Restoring Entity Ellipsis in Chat Bot)

  • 소찬호;왕지현;이충희;이연수;강재우
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.54-59
    • /
    • 2019
  • 본 논문은 대화 시스템인 챗봇의 성능 향상을 위한 생략 복원 기술의 정확률을 올리기 위한 유효 발화문 인식 모델을 제안한다. 생략 복원 기술은 챗봇 사용자의 현재 발화문의 생략된 정보를 이전 발화문으로부터 복원하는 기술이다. 유효 발화문 인식 모델은 현재 발화문의 생략된 정보를 보유한 이전 발화문을 인식하는 역할을 수행한다. 유효 발화문 인식 모델은 BERT 기반 이진 분류 모델이며, 사용된 BERT 모델은 한국어 문서를 기반으로 새로 학습된 한국어 사전 학습 BERT 모델이다. 사용자의 현재 발화문과 이전 발화문들의 토큰 임베딩을 한국어 BERT를 통해 얻고, CNN 모델을 이용하여 각 토큰의 지역적인 정보를 추출해서 발화문 쌍의 표현 정보를 구해 해당 이전 발화문에 생략된 개체값이 있는지를 판단한다. 제안한 모델의 효과를 검증하기 위해 유효 발화문 인식 모델에서 유효하다고 판단한 이전 발화문만을 생략 복원 모델에 적용한 결과, 생략 복원 모델의 정확률이 약 5% 정도 상승한 것을 확인하였다.

  • PDF

한국어 형태소 복원 확률 모델의 계산 방법 비교 (Comparison of Calculation Methods for Probabilistic Korean Morpheme Recovery Model)

  • 이다니엘;김보겸;이재성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2011년도 제23회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.130-132
    • /
    • 2011
  • 형태소 복원은 형태소 분석의 한 단계로 문장에 나타난 형태소의 변형 현상을 분석하여 규칙화하고 이를 이용하여 형태소 원형을 복원하는 것이다. 본 논문에서는 형태소 품사 부착 말뭉치로부터 다양한 형태소 변화 규칙을 학습하여 효과적으로 형태소 원형을 복원하기 위한 계산 방법을 비교한다. 이를 위해 계산 모델, 한글 코드, 학습 자료를 다르게 하여 학습하고 그에 따른 성능을 비교 분석한다.

  • PDF

다중 작업 학습을 이용한 선박사고 형량 예측 모델 제작 (Developing a Model for Predicting of Ships Accident Using Multi-Task Learning)

  • 박호민;천민아;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.418-420
    • /
    • 2020
  • 해양에서의 선박사고 발생 횟수는 매년 꾸준히 증가하고 있다. 한국해양안전심판원에서는 이러한 사례들의 판결을 관련 인력들이 공유할 수 있도록 재결서를 제작하여 발간하고 있다. 그러나 선박사고는 2019년 기준 2,971건이 발생하여, 재결서만으로 관련 인력들이 다양한 사건들의 판례를 익히기엔 어려움이 따른다. 따라서 본 논문에서는 문장 표상 기법을 이용한 다중 작업 학습을 이용하여 선박사고의 사고 유형, 적용되는 법령, 형량을 분류 및 예측하는 실험을 진행하였다. USE, KorBERT 두 가지의 모델을 2010~2019년 재결서 데이터로 학습하여 선박사고의 사고 유형, 적용되는 법령, 형량을 분류 및 예측하였으며 그에 따른 정확도를 비교한 결과, KorBERT 문장 표상을 사용한 분류 모델이 가장 정확도가 높음을 확인했다.

  • PDF

Prefix-Tuning 기반 Open-Ended Knowledge Tracing 모델 연구 (Enhancing Open-Ended Knowledge Tracing with Prefix-Tuning)

  • 손수현;강명훈;소아람;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.672-676
    • /
    • 2023
  • 지식 추적 (knowledge tacing)은 주어진 학습자의 과거 문제 해결 기록을 기반으로 학습자의 지식 습득 정도를 파악하여 목표 문제에 대한 정답 여부를 예측하는 것을 목표로 한다. 이전 연구에서는 이진 분류 기반의 모델을 사용하여 정답 유무만 예측하였기 때문에 학습자의 답변에 존재하는 정보를 활용하지 못한다. 최근 연구에서는 이를 생성 태스크로 변환하여 컴퓨터과학 분야에서 프로그래밍 질문에 대한 지식 추정을 수행하는 open-ended knowledge tracing (OKT)이 제안되었다. 하지만 최적의 OKT 모델에 대한 연구는 진행되지 않았으며 따라서 본 논문에서는 시간에 따라 변화하는 학습자의 지식 상태에 따라 답변 생성을 조정하는 새로운 OKT 방법론을 제안한다. 실험을 본 논문에서 제안하는 방법론의 우수성과 효율성을 증명한다.

  • PDF

한국어 헬스케어 개체명 인식을 위한 거대 언어 모델에서의 형태소 기반 Few-Shot 학습 기법 (Morpheme-Based Few-Shot Learning with Large Language Models for Korean Healthcare Named Entity Recognition)

  • 강수연;김건우
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.428-429
    • /
    • 2023
  • 개체명 인식은 자연어 처리의 핵심적인 작업으로, 특정 범주의 명칭을 문장에서 식별하고 분류한다. 이러한 기술은 헬스케어 분야에서 진단 지원 및 데이터 관리에 필수적이다. 그러나 기존의 사전 학습된 모델을 특정 도메인에 대해 전이학습하는 방법은 대량의 데이터에 크게 의존하는 한계를 가지고 있다. 본 연구는 방대한 데이터로 학습된 거대 언어 모델(LLM) 활용을 중심으로, 한국어의 교착어 특성을 반영하여 형태소 정보를 활용한 Few-Shot 프롬프트를 통해 한국어 헬스케어 도메인에서의 개체명 인식 방법을 제안한다.

확률적 언어 모델을 위한 자료 기반 어휘 구축 (A data-driven approach for lexicon selection for probabilistic language model)

  • 류성호;김진형
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2002년도 제14회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.3-8
    • /
    • 2002
  • 한국어를 대상으로 하는 확률적 언어 모델에서는 대부분의 경우 형태소를 기본 어휘로서 사용하고 있다. 그러나, 이러한 모델들은 학습 및 검증을 위하여 사람에 의하여 형태소 분석이 이루어진 말뭉치를 필요로 한다. 또한, 형태소의 자동 분석은 현재 표준말을 중심으로 이루어져 있어 그 적용 분야에도 한계가 있다. 본 논문에서는 한국어의 특징을 고려하여 확률적 언어 모델의 구축에 적합한 어휘의 선택 기준에 대하여 고찰하고, 통계적인 기준을 통하여 확률적 언어 모델의 어휘를 구축하는 방법을 제안한다.

  • PDF

관계 추출에서 사전학습 언어모델의 방향성 예측 분석 (Directional Predictive Analysis of Pre-trained Language Models in Relation Extraction)

  • 허윤아;오동석;강명훈;손수현;소아람;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.482-485
    • /
    • 2021
  • 최근 지식 그래프를 확장하기 위해 많은 연구가 진행되고 있다. 지식 그래프를 확장하기 위해서는 relation을 기준으로 entity의 방향성을 고려하는 것이 매우 중요하다. 지식 그래프를 확장하기 위한 대표적인 연구인 관계 추출은 문장과 2개의 entity가 주어졌을 때 relation을 예측한다. 최근 사전학습 언어모델을 적용하여 관계 추출에서 높은 성능을 보이고 있지만, entity에 대한 방향성을 고려하여 relation을 예측하는지 알 수 없다. 본 논문에서는 관계 추출에서 entity의 방향성을 고려하여 relation을 예측하는지 실험하기 위해 문장 수준의 Adversarial Attack과 단어 수준의 Sequence Labeling을 적용하였다. 또한 관계 추출에서 문장에 대한 이해를 높이기 위해 BERT모델을 적용하여 실험을 진행하였다. 실험 결과 관계 추출에서 entity에 대한 방향성을 고려하지 않음을 확인하였다.

  • PDF

지식 임베딩 심층학습을 이용한 단어 의미 중의성 해소 (Word Sense Disambiguation Using Knowledge Embedding)

  • 오동석;양기수;김규경;황태선;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.272-275
    • /
    • 2019
  • 단어 중의성 해소 방법은 지식 정보를 활용하여 문제를 해결하는 지식 기반 방법과 각종 기계학습 모델을 이용하여 문제를 해결하는 지도학습 방법이 있다. 지도학습 방법은 높은 성능을 보이지만 대량의 정제된 학습 데이터가 필요하다. 반대로 지식 기반 방법은 대량의 정제된 학습데이터는 필요없지만 높은 성능을 기대할수 없다. 최근에는 이러한 문제를 보완하기 위해 지식내에 있는 정보와 정제된 학습데이터를 기계학습 모델에 학습하여 단어 중의성 해소 방법을 해결하고 있다. 가장 많이 활용하고 있는 지식 정보는 상위어(Hypernym)와 하위어(Hyponym), 동의어(Synonym)가 가지는 의미설명(Gloss)정보이다. 이 정보의 표상을 기존의 문장의 표상과 같이 활용하여 중의성 단어가 가지는 의미를 파악한다. 하지만 정확한 문장의 표상을 얻기 위해서는 단어의 표상을 잘 만들어줘야 하는데 기존의 방법론들은 모두 문장내의 문맥정보만을 파악하여 표현하였기 때문에 정확한 의미를 반영하는데 한계가 있었다. 본 논문에서는 의미정보와 문맥정보를 담은 단어의 표상정보를 만들기 위해 구문정보, 의미관계 그래프정보를 GCN(Graph Convolutional Network)를 활용하여 임베딩을 표현하였고, 기존의 모델에 반영하여 문맥정보만을 활용한 단어 표상보다 높은 성능을 보였다.

  • PDF