다양한 Masked Language Modeling을 통해 학습한 사전 학습 모델들은 질의응답 시스템에서 매우 높은 성능을 보여주고 있다. 이러한 강력한 성능에도 불구하고 그러한 모델들이 질의를 정확히 이해하고 정답을 예측하는 것인지, 혹은 질의에 등장하는 특정 단어와 잘 나타나는 단어들을 기반으로 정답을 예측하는 것인지에 대한 분석은 아직 충분하지 않다. 이러한 사전학습 모델의 질의 이해 능력을 밝히기 위하여, 본 연구에서는 클레버 한스 테스트를 제안한다. 클레버 한스 테스트에서는 의미적 구조적, 의도 유무 측면의 여러 질의 변형이 된 데이터 셋들이 포함되어 있다. 본 연구에서는 클레버 한스 테스트를 통하여 사전학습 모델들이 의미적으로 달라진 질의나 의도가 제거된 질의를 입력으로 받아도 성능이 크게 떨어지지 않는 것을 확인하였고 모델의 질의 이해능력 부족을 실험적으로 시사하였다.
본 논문에서는 Multi-layer sequence-to-sequence 구조를 이용해 한국어 대화 시스템을 개발하였다. sequence-to-sequence는 RNN 혹은 그 변형 네트워크에 데이터를 입력하고, 입력이 완료된 후의 은닉층의 embedding에 기반해 출력열을 생성한다. 우리는 sequence-to-sequence로 입력된 발화에 대해 출력 발화를 내어주는 대화 모델을 학습하였고, 그 성능을 측정하였다. RNN에 대해서는 약 80만 발화를, MTRNN에 대해서는 5만 발화를 학습하고 평가하였다. 모델의 결과로 나타난 발화들을 정리하고 분석하였다.
사실 검증(Fact verification) 문제는 문서 검색(Document retrieval), 증거 선택(Evidence selection), 증거 검증(Claim verification) 3가지 단계로 구성되어있다. 사실 검증 모델들의 주요 관심사인 증거 검증 단계에서 많은 모델이 제안되는 가운데 증거 선택 단계에 집중하여 강화 학습을 통해 해결한 모델이 제안되었다. 그래프 기반의 모델과 강화 학습 기반의 사실 검증 모델을 소개하고 각 모델을 한국어 사실 검증에 적용해본다. 또한, 두 모델을 같이 사용하여 각 모델의 장점을 가지는 부분을 병렬적으로 결합한 모델의 성능과 증거의 구성 단위에 따른 성능도 비교한다.
본 연구의 목적은 문학 텍스트를 학습한 머신 러닝 언어 모델을 구현하는데 있다. 문학 텍스트는 일상 대화문처럼 질문에 대한 답변이 분명하게 구분되지 않을 때가 많고 대명사와 비유적 표현, 지문, 독백 등으로 다양하게 구성되어 있다는 특징이 있다. 이런 점들이 알고리즘의 학습을 용이하지 않게 하여 문학 텍스트를 활용하는 기계 학습의 필요성을 저해시킨다. 문학 텍스트를 학습한 알고리즘이 일반 문장을 학습한 알고리즘에 비해 좀 더 인간 친화적인 상호작용을 보일 가능성이 높다. 본 논문은 '문학 텍스트를 학습한 머신 러닝 언어 모델 구현'에 관한 연구로서, 대화형 기계 학습에 문학 텍스트를 활용하는 연구에서 필수적으로 선행되어야 할 세 가지 텍스트 보정 작업을 제안한다: 대명사 처리, 대화쌍 늘리기, 데이터 증폭 등에 대한 내용으로 기계 학습이 용이하고 그 효과도 높다고 판단됩니다. 인공지능을 위한 학습용 데이터는 그 의미가 명료해야 기계 학습이 용이하고 그 효과도 높게 나타난다. 문학과 같은 특수한 장르의 텍스트를 자연어 처리 연구에 도입하는 것은 새로운 언어 학습 방식의 제안과 함께 머신 러닝의 학습 영역도 확장시켜 줄 것이다.
목적 지향 대화 시스템은 사용자가 원하는 목적을 달성하기 위해 사용하는 시스템으로 일상 대화와 다르게 시스템이 정보를 명확히 전달하는 것이 중요하다. 따라서 최근 연구에서 목적 지향 대화 시스템을 위한 자연어 생성 모델은 정해진 대화 정책에 따라 알맞은 응답을 생성할 수 있도록 의도와 슬롯 정보를 담은 대화 행위(Dialog Act)를 활용한다. 하지만 대화 행위는 생성하는 문장을 탁월하게 제어하는 반면에 대화의 흐름과 상황에 맞게 다양한 문장을 생성하기 어렵다는 문제점을 가지고 있다. 이러한 문제점을 해소하고자 본 논문에서는 목적에 부합하는 내용을 명확하게 자연어로 생성하기 위해 대화 행위를 사용하면서 동시에 일상 대화 생성 모델과 같이 문맥을 고려하여 대화 흐름에 어울리는 자연스러운 문장을 생성할 수 있는 문맥 기반의 제어 가능한 자연어 생성 모델을 제안한다. 실험에서는 KoGPT2 사전 학습 모델과 한국어 대화 데이터셋을 사용하였으며 실험을 통해 대화 행위 기반의 자연어 생성 모델과 본 연구에서 제안한 문맥 기반의 제어 가능한 자연어 생성 모델을 비교하였다. 결과적으로 대화 행위를 단독으로 학습한 모델보다 일정 문맥을 함께 학습한 모델이 유의미한 BLEU 점수 향상을 보인다는 점을 확인하였다.
근래의 자연어처리 분야에서는 잘 만들어진 도구(Library)를 이용하여 생산성 높은 개발과 연구가 활발하게 이뤄지고 있다. 이 중에 대다수는 깊은 학습(Deep-Learning, 딥러닝) 기반인데, 이런 모델들은 학습 속도가 느리고, 비용이 비싸고, 사용(Run-Time) 속도도 느리다. 이뿐만 아니라 라벨(Label)의 가짓수가 굉장히 많거나, 라벨의 구성이 단어마다 달라질 수 있는 의미분별(동형이의어, 다의어 번호 태깅) 분야에서 딥러닝은 굉장히 비효율적인 문제가 있다. 이런 문제들은 오히려 기존의 얕은 학습(Shallow-Learning)기반 모델에서는 없던 것들이지만, 최근의 연구경향에서 딥러닝 비중이 급격히 증가하면서, 멀티스레딩 같은 고급 기능들을 지원하는 얕은 학습 기반 언어모델이 새로이 개발되지 않고 있었다. 본 논문에서는 학습과 태깅 모두에서 멀티스레딩을 지원하고, 딥러닝에서 연구된 드롭아웃 기법이 구현된 자연어처리 도구인 혼합 자질 가변 표지기 ManiFL(Manifold Feature Labelling : ManiFL)을 소개한다. 본 논문은 실험을 통해서 ManiFL로 다의어태깅이 가능함을 보여주고, 딥러닝과 CRFsuite에서 높은 성능을 보여주는 개체명 인식에서도 비교할만한 성능이 나옴을 보였다.
환자와 주변인들에게 다양한 문제를 야기하는 치매와 조현병 진단을 위한 모델을 제안한다. 치매와 조현병 진단을 위해 프로토콜에 따라 녹음한 의사와 내담자 음성 시료를 전사 작업하여 분류 태스크를 수행하였다. 사전 학습한 언어 모델의 MLM Head를 이용해 분류 태스크를 수행하는 Prompt 기반의 분류 모델을 제안하였다. 또한 많은 수의 데이터 수를 확보하기 어려운 의료 분야에 효율적인 Few-Shot 학습 방식을 이용하였다. CLS 토큰을 미세조정하는 일반적 학습 방식의 Baseline과 비교해 Full-Shot 실험에서 7개 태스크 중 1개 태스크에서 macro, micro-F1 점수 모두 향상되었고, 3개 태스크에서 하나의 F1 점수만 향샹된 것을 확인 하였다. 반면, Few-Shot 실험에서는 7개 태스크 중 2개 태스크에서 macro, micro-F1 점수가 모두 향상되었고, 2개 태스크에서 하나의 F1 점수만 향상되었다.
무선 기술의 고도화 및 이동통신 기술의 인프라가 빠르게 성장함에 따라 AI 기반 플랫폼을 적용한 시스템이 사용자의 주목을 받고 있다. 특히 사용자의 취향이나 관심사 등을 이해하고, 선호하는 아이템을 추천해주는 시스템은 고도화된 전자상거래 맞춤형 서비스 및 스마트 홈 등에 적용되고 있다. 그러나 이러한 추천 시스템은 다양한 사용자들의 취향이나 관심사 등에 대한 선호도를 실시간으로 반영하기 어렵다는 문제가 있다. 본 연구에서는 이러한 문제를 해소하기 위해 GRU(Gated Recurrent Unit) 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템을 제안하였다. 본 시스템에서는 사용자의 취향이나 관심사를 실시간으로 반영하기 위해 Fuzzy-AHP를 적용하였다. 또한 대중들의 관심사 및 해당 영화의 내용을 분석하여 사용자가 선호하는 요인과 유사한 영화를 추천하기 위해 GRU 언어 모델 기반의 모델을 적용하였다. 본 추천 시스템의 성능을 검증하기 위해 학습 모듈에서 사용된 스크래핑 데이터를 이용하여 학습 모델의 적합성을 측정하였으며, LSTM(Long Short-Term Memory) 언어 모델과 Epoch 당 학습 시간을 비교하여 학습 수행 속도를 측정하였다. 그 결과 본 연구의 학습 모델의 평균 교차 검증 지수가 94.8%로 적합하다는 것을 알 수 있었으며, 학습 수행 속도가 LSTM 언어 모델보다 우수함을 확인할 수 있었다.
최근 자연어 생성 연구는 딥러닝 기반의 사전 학습 모델을 중심으로 활발하게 연구되고 있다. 하위 분야 중 하나인 텍스트 확장은 입력 텍스트를 출력에 잘 반영하는 것이 무엇보다도 중요하다. 기존 한국어 기반 텍스트 확장 연구의 경우 몇 개의 개념 집합에 기반해 문장을 생성하도록 한다. 그러나 이는 사람의 실제 발화 길이에 비해 짧고 단순한 문장만을 생성한다는 문제점이 존재한다. 본 논문은 이러한 문제점을 개선하면서 문학 스타일의 문장들을 생성하는 모델을 제안하였다. 또한 동일 모델에 대해 학습 데이터의 양에 따른 성능도 비교하였다. 그 결과, 짧은 요약문을 통해 문학 스타일의 여러 문장들을 생성하는 것을 확인하였고, 학습 데이터를 추가한 모델이 성능이 더 높게 나타나는 것을 확인하였다.
다중추론 질의응답 태스크는 하나의 문서만 필요한 기존의 단일추론 질의응답(Single-hop QA)을 넘어서 복잡한 추론을 요구하는 질문에 응답하는 것이 목표이다. IRQA에서는 검색 모델의 역할이 중요한 반면, 주목받고 있는 Dense Retrieval 모델 기반의 다중추론 질의응답 검색 모델은 찾기 어렵다. 본 논문에서는 검색분야에서 좋은 성능 보이고 있는 Dense Retrieval 모델의 다중추론을 위한 사전학습 방법을 제안하고 관련 한국어 데이터 셋에서 이전 방법과의 성능을 비교 측정하여 학습 방법의 유효성을 검증하고 있다. 이를 통해 지식 베이스, 엔터티 링킹, 개체명 인식모듈을 비롯한 다른 서브모듈을 사용하지 않고도 다중추론 Dense Retrieval 모델을 학습시킬 수 있음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.