• Title/Summary/Keyword: 언어 자원

Search Result 440, Processing Time 0.025 seconds

Cross-Lingual Transfer of Pretrained Transformers to Resource-Scarce Languages (사전 학습된 Transformer 언어 모델의 이종 언어 간 전이 학습을 통한 자원 희소성 문제 극복)

  • Lee, Chanhee;Park, Chanjun;Kim, Gyeongmin;Oh, Dongsuk;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.135-140
    • /
    • 2020
  • 사전 학습된 Transformer 기반 언어 모델은 자연어처리 시스템에 적용되었을 시 광범위한 사례에서 큰 폭의 성능 향상을 보여준다. 여기서 사전 학습에 사용되는 언어 모델링 태스크는 비지도 학습에 속하는 기술이기 때문에 상대적으로 데이터의 확보가 쉬운 편이다. 하지만 몇 종의 주류 언어를 제외한 대부분 언어는 활용할 수 있는 언어 자원 자체가 희소하며, 따라서 이러한 사전 학습 기술의 혜택도 누리기 어렵다. 본 연구에서는 이와 같은 상황에서 발생할 수 있는 자원 희소성 문제를 극복하기 위해 이종 언어 간 전이 학습을 이용하는 방법을 제안한다. 본 방법은 언어 자원이 풍부한 언어에서 학습된 Transformer 기반 언어 모델에서 얻은 파라미터 중 재활용 가능한 부분을 이용하여 목표 언어의 모델을 초기화한 후 학습을 진행한다. 또한, 기존 언어와 목표 언어의 차이를 학습하는 역할을 하는 적응층들을 추가하여 이종 언어 간 전이 학습을 돕는다. 제안된 방법을 언어 자원이 희귀한 상황에 대하여 실험해본 결과, 전이 학습을 사용하지 않은 기준 모델 대비 perplexity와 단어 예측의 정확도가 큰 폭으로 향상됨을 확인하였다.

  • PDF

Extracting Korean-English Parallel Sentences based on Measure of Sentences Similarity Using Sequential Matching of Heterogeneous Language Resources (이질적인 언어 자원의 순차적 매칭을 이용한 문장 유사도 계산 기반의 위키피디아 한국어-영어 병렬 문장 추출 방법)

  • Cheon, Juryong;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2014.10a
    • /
    • pp.127-132
    • /
    • 2014
  • 본 논문은 위키피디아로부터 한국어-영어 간 병렬 문장을 추출하기 위해 이질적 언어 자원의 순차적 매칭을 적용한 유사도 계산 방법을 제안한다. 선행 연구에서는 병렬 문장 추출을 위해 언어 자원별로 유사도를 계산하여 선형 결합하였고, 토픽모델을 이용해 추정한 단어의 토픽 분포를 유사도 계산에 추가로 이용함으로써 병렬 문장 추출 성능을 향상시켰다. 하지만, 이는 언어 자원들이 독립적으로 사용되어 각 언어자원이 가지는 오류가 문장 간 유사도 계산에 반영되는 문제와 관련이 적은 단어 간의 분포가 유사도 계산에 반영되는 문제가 있다. 본 논문에서는 이질적인 언어 자원들을 이용해 순차적으로 단어를 매칭함으로써 언어 자원들의 독립적인 사용으로 각 자원의 오류가 유사도에 반영되는 문제를 해결하였고, 관련이 높은 단어의 분포만을 유사도 계산에 이용함으로써 관련이 적은 단어의 분포가 반영되는 문제를 해결하였다. 실험을 통해, 언어 자원들을 이용해 순차적으로 매칭한 유사도 계산 방법은 선행 연구에 비해 F1-score 48.4%에서 51.3%로 향상된 성능을 보였고, 관련이 높은 단어의 분포만을 유사도 계산에 이용한 방법은 약 10%에서 34.1%로 향상된 성능을 얻었다. 마지막으로, 제안한 유사도 방법들을 결합함으로써 선행연구의 51.6%에서 2.7%가 향상된 54.3%의 성능을 얻었다.

  • PDF

DecoFESA: A Hybrid Platform for Feature-based Sentiment Analysis Based on DECO-LGG Linguistic Resources with Parser and LSTM (DECO-LGG 언어자원 및 의존파서와 LSTM을 활용한 하이브리드 자질기반 감성분석 플랫폼 DecoFESA 구현)

  • Hwang, Changhoe;Yoo, Gwanghoon;Nam, Jeesun
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.321-326
    • /
    • 2020
  • 본 연구에서는 한국어 감성분석 성능 향상을 위한 DECO(Dictionnaire Electronique du COreen) 한국어 전자사전과 LGG(Local-Grammar Graph) 패턴문법 기술 프레임에 의존파서 및 LSTM을 적용하는 하이브리드 방법론을 제안하였다. 본 연구에 사용된 DECO-LGG 언어자원을 소개하고, 이에 기반하여 의미 정보를 의존파서(D-PARS)와 페어링하는 한편 OOV(Out Of Vocabulary)의 문제를 LSTM을 통해 해결하여 자질기반 감성분석 결과를 제시하였다. 부트스트랩 방식으로 반복 확장될 수 있는 LGG 언어자원 및 알고리즘을 통해 수행되는 자질기반 감성분석 프로세스는 전용 플랫폼 DecoFESA를 통해 그 범용성을 확장하였다. 실험을 위해서 네이버 쇼핑몰의 '화장품 구매 후기글'을 크롤링하였으며, DecoFESA 플랫폼을 통해 현재 구축된 DECO-LGG 언어자원 기반의 감성분석 성능을 평가하였다. 이를 통해 대용량 언어자원의 구축과 이를 활용하기 위한 어휘 시퀀스 처리 알고리즘의 구현이 보다 정확한 자질기반 감성분석 결과를 제공할 수 있음을 확인하였다.

  • PDF

A Comparative Study on Building Korean & Chinese Music Request Sentence Patterns for AI Assistant Platforms (AI 어시스턴트 플랫폼의 한국어와 중국어 음악청취 요청문 패턴구축 비교 연구)

  • Yun, Soeun;Li, Jiabin;Nam, Jeesun
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.383-388
    • /
    • 2020
  • 본 연구에서는 AI 어시스턴트의 음악청취 도메인 내 요청문을 인식 및 처리하기 위해 한국어와 중국어를 중심으로 도메인 사전 및 패턴문법 언어자원을 구축하고 그 결과를 비교분석 하였다. 이를 통해 향후 다국어 언어자원 구축의 접근 방법을 모색할 수 있으며, 궁극적으로 패턴 기반 문법으로 기술한 언어자원을 요청문 인식에 직접 활용하고 또한 주석코퍼스 생성을 통해 기계학습 성능 향상에 도움을 줄 수 있을 것으로 기대된다. 본 연구에서는 우선 패턴문법의 구체적인 양상을 살펴보기에 앞서, 해당 도메인의 요청문 유형의 카테고리를 결정하는 과정을 거쳤다. 이를 기반으로 한국어와 중국어 요청문의 실현 양상과 패턴유형을 LGG 프레임으로 구조화한 후, 한국어와 중국어 패턴문법 간의 통사적, 형태적, 어휘적 차이점을 비교분석 하여 음악청취 도메인 요청문의 언어별 생성 구조 차이점을 관찰할 수 있었다. 구축한 패턴문법은 개체명을 변수(X)로 설정하는 경우, 한국어에서는 약 2,600,600개, 중국어에서는 약 11,195,600개의 표현을 인식할 수 있었다. 결과적으로 본 연구에서 제안한 언어자원의 언어별 차이에 대한 통찰을 통해 다국어 차원의 요청문 인식 자원과 기계학습 데이터로서의 효용을 확인하였다.

  • PDF

Research on Features for Effective Cross-Lingual Transfer in Korean (효과적인 한국어 교차언어 전송을 위한 특성 연구)

  • Taejun Yun;Taeuk Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.119-124
    • /
    • 2023
  • 자원이 풍부한 언어를 사용하여 훈련된 모델을 만들고 해당 모델을 사용해 자원이 부족한 언어에 대해 전이 학습하는 방법인 교차언어 전송(Cross-Lingual Transfer)은 다국어 모델을 사용하여 특정한 언어에 맞는 모델을 만들 때 사용되는 일반적이고 효율적인 방법이다. 교차언어 전송의 성능은 서비스하는 언어와 전송 모델을 만들기 위한 훈련 데이터 언어에 따라 성능이 매우 다르므로 어떤 언어를 사용하여 학습할지 결정하는 단계는 효율적인 언어 서비스를 위해 매우 중요하다. 본 연구에서는 교차언어 전송을 위한 원천언어를 찾을 수 있는 특성이 무엇인지 회귀분석을 통해 탐구한다. 또한 교차언어전송에 용이한 원천 학습 언어를 찾는 기존의 방법론들 간의 비교를 통해 더 나은 방법을 도출해내고 한국어의 경우에 일반적으로 더 나은 원천 학습 언어를 찾을 수 있는 방법론을 도출한다.

  • PDF

A Dictionary Constructing System based on a Web-based Object Model of Distributed Language Resources (웹 기반의 언어자원 객체화에 근거한 사전 개발 시스템)

  • 황도삼
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.1_2
    • /
    • pp.1-9
    • /
    • 2001
  • In this paper. we present a web-based object model of language resources that are distributed in different places in variable forms. Language resources organized as objects distributed over web sites can be easily utilized to produce application systems of natural language processing. So. it renders effective maintenance of overall language processing environment in that upgrading language resources can lead to the mechanical upgrading of application systems. We implemented a dictionary constructing system for Korean Language (YDK2000). This system can integrate various linguistic dictionaries and also allow to construct high quality application specific dictionaries by connecting them to natural language systems on the Internet.

  • PDF

Mapping Heterogenous Hierarchical Concept Classifications for the HLP Applications -A case of Sejong Semantic Classes and KorLexNoun 1.5- (인간언어공학에의 활용을 위한 이종 개념체계 간 사상 -세종의미부류와 KorLexNoun 1.5-)

  • Bae, Sun-Mee;Im, Kyoungup;Yoon, Aesun
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.6-13
    • /
    • 2009
  • 본 연구에서는 인간언어공학에서의 활용을 위해 세종전자사전의 의미부류와 KorLexNoun 1.5의 상위노드 간의 사상을 목표로 전문가의 수작업에 의한 세밀한 사상 방법론(fine-grained mapping method)을 제안한다. 또한 이질적인 두 이종 자원 간의 사상에 있어 각 의미체계의 이질성으로 인해 발생하는 여러 가지 문제점을 살펴보고, 그 해결방안을 제안한다. 본 연구는 세종의미부류체계가 밝히고자 했던 한국어의 의미구조와, Prinston WordNet을 참조로 하여 KorLexNoun에 여전히 영향을 미치고 있는 영어 의미구조를 비교함으로써 공통점과 차이점을 파악할 수 있고, 이를 바탕으로 언어 독립적인 개념체계를 구축하는 데 기여할 수 있다. 또한 향후 KorLex의 용언에 기술되어 있는 문형정보와 세종 전자사전의 용언의 격틀 정보를 통합 구축하여 구문분석에서 이용할 때, 세종 의미부류와 KorLexNoun의 상위노드를 통합 구축함으로써 논항의 일반화된 선택제약규칙의 기술에서 이용될 수 있다. 본 연구에서 제안된 사상방법론은 향후 이종 자원의 자동 사상 연구에서도 크게 기여할 것이다. 아울러 두 이종 자원의 사상을 통해 두 의미체계가 지닌 장점을 극대화하고, 동시에 단점을 상호 보완하여 보다 완전한 언어자원으로써 구문분석이나 의미분석에서 이용될 수 있다.

  • PDF

Pivot-based Bilingual Lexicon Extraction Using Word2Vec and CCA (중간언어 기반의 Word2Vec와 CCA를 이용한 이중언어 사전 추출)

  • Kim, Jeong-Tae;Kim, Chang-Hyun;Cheon, Min-Ah;Kim, Jae-Hoon;Kim, Jae-Hwan
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.307-309
    • /
    • 2016
  • 이중언어 사전은 자연어처리 분야에서 매우 유용한 자원으로 사용되고 있다. 그러나 초기사전이나 병렬말뭉치 등 자원이 부족한 언어 쌍에 대해서 이중언어 사전을 추출하는 것은 쉽지 않다. 이러한 문제를 해결하기 위해 본 논문에서는 중간 언어 기반으로 Word2Vec와 CCA를 이용하여 이중언어 사전을 추출하는 방법을 제안한다. 본 논문에서 제안하는 방법의 성능을 평가하기 위해서 중간언어로 영어를 사용하여 스페인어-한국어에 대한 이중언어 사전을 추출하는 실험을 하였다. 무작위로 뽑은 200개의 단어에 대한 번역 정확도를 구하였다. 그 결과 최상위에서 37.5%, 상위 10위에서 63%, 그리고 상위 20위에서는 69.5%의 정확도를 얻을 수 있었다.

  • PDF

Pivot-based Bilingual Lexicon Extraction Using Word2Vec and CCA (중간언어 기반의 Word2Vec와 CCA를 이용한 이중언어 사전 추출)

  • Kim, Jeong-Tae;Kim, Chang-Hyun;Cheon, Min-Ah;Kim, Jae-Hoon;Kim, Jae-Hwan
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.307-309
    • /
    • 2016
  • 이중언어 사전은 자연어처리 분야에서 매우 유용한 자원으로 사용되고 있다. 그러나 초기사전이나 병렬말뭉치 등 자원이 부족한 언어 쌍에 대해서 이중언어 사전을 추출하는 것은 쉽지 않다. 이러한 문제를 해결하기 위해 본 논문에서는 중간 언어 기반으로 Word2Vec와 CCA를 이용하여 이중언어 사전을 추출하는 방법을 제안한다. 본 논문에서 제안하는 방법의 성능을 평가하기 위해서 중간언어로 영어를 사용하여 스페인어-한국어에 대한 이중언어 사전을 추출하는 실험을 하였다. 무작위로 뽑은 200개의 단어에 대한 번역 정확도를 구하였다. 그 결과 최상위에서 37.5%, 상위 10위에서 63%, 그리고 상위 20위에서는 69.5%의 정확도를 얻을 수 있었다.

  • PDF

A Study on Utilization of Wikipedia Contents for Automatic Construction of Linguistic Resources (언어자원 자동 구축을 위한 위키피디아 콘텐츠 활용 방안 연구)

  • Yoo, Cheol-Jung;Kim, Yong;Yun, Bo-Hyun
    • Journal of Digital Convergence
    • /
    • v.13 no.5
    • /
    • pp.187-194
    • /
    • 2015
  • Various linguistic knowledge resources are required in order that machine can understand diverse variation in natural languages. This paper aims to devise an automatic construction method of linguistic resources by reflecting characteristics of online contents toward continuous expansion. Especially we focused to build NE(Named-Entity) dictionary because the applicability of NEs is very high in linguistic analysis processes. Based on the investigation on Korean Wikipedia, we suggested an efficient construction method of NE dictionary using the syntactic patterns and structural features such as metadatas.