• Title/Summary/Keyword: 언어 예측 모델

Search Result 187, Processing Time 0.03 seconds

Attention-Based Ensemble for Mitigating Side Effects of Data Imbalance Method (데이터 불균형 기법의 부작용 완화를 위한 어텐션 기반 앙상블)

  • Yo-Han Park;Yong-Seok Choi;Wencke Liermann;Kong Joo Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.546-551
    • /
    • 2023
  • 일반적으로 딥러닝 모델은 모든 라벨에 데이터 수가 균형을 이룰 때 가장 좋은 성능을 보인다. 그러나 현실에서는 특정라벨에 대한 데이터가 부족한 경우가 많으며 이로 인해 불균형 데이터 문제가 발생한다. 이에 대한 해결책으로 오버샘플링과 가중치 손실과 같은 데이터 불균형 기법이 연구되었지만 이러한 기법들은 데이터가 적은 라벨의 성능을 개선하는 동시에 데이터가 많은 라벨의 성능을 저하시키는 부작용을 가지고 있다. 본 논문에서는 이 문제를 완화시키고자 어텐션 기반의 앙상블 기법을 제안한다. 어텐션 기반의 앙상블은 데이터 불균형 기법을 적용한 모델과 적용하지 않은 모델의 출력 값을 가중 평균하여 최종 예측을 수행한다. 이때 가중치는 어텐션 메커니즘을 통해 동적으로 조절된다. 그로므로 어텐션 기반의 앙상블 모델은 입력 데이터 특성에 따라 가중치를 조절할 수가 있다. 실험은 에세이 자동 평가 데이터를 대상으로 수행하였다. 실험 결과로는 제안한 모델이 데이터 불균형 기법의 부작용을 완화하고 성능이 개선되었다.

  • PDF

Paragraph Re-Ranking and Paragraph Selection Method for Multi-Paragraph Machine Reading Comprehension (다중 지문 기계독해를 위한 단락 재순위화 및 세부 단락 선별 기법)

  • Cho, Sanghyun;Kim, Minho;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.184-187
    • /
    • 2020
  • 다중 지문 기계독해는 질문과 여러 개의 지문을 입력받고 입력된 지문들에서 추출된 정답 중에 하나의 정답을 출력하는 문제이다. 다중 지문 기계독해에서는 정답이 있을 단락을 선택하는 순위화 방법에 따라서 성능이 크게 달라질 수 있다. 본 논문에서는 단락 안에 정답이 있을 확률을 예측하는 단락 재순위화 모델과 선택된 단락에서 서술형 정답을 위한 세부적인 정답의 경계를 예측하는 세부 단락 선별 기법을 제안한다. 단락 순위화 모델 학습의 경우 모델 학습을 위해 각 단락의 출력에 softmax와 cross-entroy를 이용한 손실 값과 sigmoid와 평균 제곱 오차의 손실 값을 함께 학습하고 키워드 매칭을 함께 적용했을 때 KorQuAD 2.0의 개발셋에서 상위 1개 단락, 3개 단락, 5개 단락에서 각각 82.3%, 94.5%, 97.0%의 재현율을 보였다. 세부 단락 선별 모델의 경우 입력된 두 단락을 비교하는 duoBERT를 이용했을 때 KorQuAD 2.0의 개발셋에서 F1 83.0%의 성능을 보였다.

  • PDF

A Fuzzy-AHP-based Movie Recommendation System with the Bidirectional Recurrent Neural Network Language Model (양방향 순환 신경망 언어 모델을 이용한 Fuzzy-AHP 기반 영화 추천 시스템)

  • Oh, Jae-Taek;Lee, Sang-Yong
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.525-531
    • /
    • 2020
  • In today's IT environment where various pieces of information are distributed in large volumes, recommendation systems are in the spotlight capable of figuring out users' needs fast and helping them with their decisions. The current recommendation systems, however, have a couple of problems including that user preference may not be reflected on the systems right away according to their changing tastes or interests and that items with no relations to users' preference may be recommended, being induced by advertising. In an effort to solve these problems, this study set out to propose a Fuzzy-AHP-based movie recommendation system by applying the BRNN(Bidirectional Recurrent Neural Network) language model. Applied to this system was Fuzzy-AHP to reflect users' tastes or interests in clear and objective ways. In addition, the BRNN language model was adopted to analyze movie-related data collected in real time and predict movies preferred by users. The system was assessed for its performance with grid searches to examine the fitness of the learning model for the entire size of word sets. The results show that the learning model of the system recorded a mean cross-validation index of 97.9% according to the entire size of word sets, thus proving its fitness. The model recorded a RMSE of 0.66 and 0.805 against the movie ratings on Naver and LSTM model language model, respectively, demonstrating the system's superior performance in predicting movie ratings.

Research on the Development Direction of Language Model-based Generative Artificial Intelligence through Patent Trend Analysis (특허 동향 분석을 통한 언어 모델 기반 생성형 인공지능 발전 방향 연구)

  • Daehee Kim;Jonghyun Lee;Beom-seok Kim;Jinhong Yang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.279-291
    • /
    • 2023
  • In recent years, language model-based generative AI technologies have made remarkable progress. In particular, it has attracted a lot of attention due to its increasing potential in various fields such as summarization and code writing. As a reflection of this interest, the number of patent applications related to generative AI has been increasing rapidly. In order to understand these trends and develop strategies accordingly, future forecasting is key. Predictions can be used to better understand the future trends in the field of technology and develop more effective strategies. In this paper, we analyzed patents filed to date to identify the direction of development of language model-based generative AI. In particular, we took an in-depth look at research and invention activities in each country, focusing on application trends by year and detailed technology. Through this analysis, we tried to understand the detailed technologies contained in the core patents and predict the future development trends of generative AI.

Prosodic-Boundary Prediction for Korean Text-to-Speech System (한국어 TTS 시스템을 위한 운율구 경계 예측)

  • Chun Jin-wook;Kim Han Woo;Kim Dong gun;Lee Yanghee
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.77-82
    • /
    • 2002
  • 운율은 음성의 초분절적인 면에 연관하는 음성의 한 성으로서 통상적으로 화자는 음성을 달하는 과정에서 청자의 이해를 돕기 위해 운율을 사용하게 된다. 본 논문은 이러한 운율을 이루는 성분 중의 하나인 운율구의 위치 예측에 대한 성능을 향상시키는 것에 그 목적을 둔다. 한국어 운율 정보에 대한 표기 방법 중의 하나인 K-ToBI를 기반으로 하여, 운율구의 경계와 그에 대한 레벨을 Break Indices 정보로서 나타내었고, 통계학 분야에서 제안된 Support Vector Machine(SVM)을 이용하여 시스템의 예측률 향상을 꾀하였다. 기존의 방법에서 사용된 트리 기반 모델을 이용하여 한국어 운율에 가장 많은 영향을 끼치는 언어 정보들을 추출하였고 이를 실험에 적용하였다. 기존의 트리 모델과 SVM 모델에 대한 예측률을 비교한 결과, 경계 유무 정보 예측과 4단계의 레벨을 가지는 경계 정보의 예측에서 모두 본 방법이 보다 높은 예측률을 보여 주어 본 연구에서 제시한 접근법이 운율구의 경계 정보를 예측하는 데에 있어 더욱 효과적인 접근법임을 실험적으로 입증하였다.

  • PDF

A Design of Dialogue Interface System Based on Statistical Approach (통계에 기반한 다영영 대화형 도우미 시스템의 설계)

  • Jeong, Hyoung-Il;Kim, Dong-Hyun;Jang, Hyo-Jun;Kim, Hark-Soo;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2006.10e
    • /
    • pp.262-267
    • /
    • 2006
  • 대화 인터페이스 시스템(dialogue interface system)은 인간과 컴퓨터의 상호작용을 위한 도구로서 자연언어(natural language)를 사용하여 정보를 공유하거나 특정 업무를 수행하는 프로그램이다. 대화 인터페이스 시스템에 대한 기존의 연구들은 영역 의존적인 스크립트나 계획 추론을 위한 계획 지식을 이용해 왔다. 스크립트 모델(script model)은 제한적인 실용시스템 개발을 위해 주로 연구되었고 계획에 기반한 모델은 대화의 원리를 이해하는 분야에서 주로 연구되어 왔다. 그러나 기존의 모델들은 시스템 확장이 매우 어려우며 예측하지 못한 사용자 발화에 대하여 대응이 어렵기 때문에 매우 제한적인 영역이나 정해진 형태의 대화만을 처리할 수 있다. 본 논문에서는 이런 단점들을 보완하기 위하여 통계에 기반한 다 영역(multi-domain) 대화 모델을 제안한다. 제안된 시스템은 각 작업들에 대하여 해당 작업에 적합한 영역 모델(domain model)을 잘 알려진 프레임 구조를 따르면서 사용자 의도 파악과 시스템 의도 생성에 통계적 방법을 사용한다. 이러한 하이브리드 형태의 구조 덕분에 제안된 시스템은 영역 확장성과 이식성이 뛰어나다는 장점을 가진다.

  • PDF

Cross-Lingual Style-Based Title Generation Using Multiple Adapters (다중 어댑터를 이용한 교차 언어 및 스타일 기반의 제목 생성)

  • Yo-Han Park;Yong-Seok Choi;Kong Joo Lee
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.8
    • /
    • pp.341-354
    • /
    • 2023
  • The title of a document is the brief summarization of the document. Readers can easily understand a document if we provide them with its title in their preferred styles and the languages. In this research, we propose a cross-lingual and style-based title generation model using multiple adapters. To train the model, we need a parallel corpus in several languages with different styles. It is quite difficult to construct this kind of parallel corpus; however, a monolingual title generation corpus of the same style can be built easily. Therefore, we apply a zero-shot strategy to generate a title in a different language and with a different style for an input document. A baseline model is Transformer consisting of an encoder and a decoder, pre-trained by several languages. The model is then equipped with multiple adapters for translation, languages, and styles. After the model learns a translation task from parallel corpus, it learns a title generation task from monolingual title generation corpus. When training the model with a task, we only activate an adapter that corresponds to the task. When generating a cross-lingual and style-based title, we only activate adapters that correspond to a target language and a target style. An experimental result shows that our proposed model is only as good as a pipeline model that first translates into a target language and then generates a title. There have been significant changes in natural language generation due to the emergence of large-scale language models. However, research to improve the performance of natural language generation using limited resources and limited data needs to continue. In this regard, this study seeks to explore the significance of such research.

Performance Improvement of a Korean Prosodic Phrase Boundary Prediction Model using Efficient Feature Selection (효율적인 기계학습 자질 선별을 통한 한국어 운율구 경계 예측 모델의 성능 향상)

  • Kim, Min-Ho;Kwon, Hyuk-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.11
    • /
    • pp.837-844
    • /
    • 2010
  • Prediction of the prosodic phrase boundary is one of the most important natural language processing tasks. We propose, for the natural prediction of the Korean prosodic phrase boundary, a statistical approach incorporating efficient learning features. These new features reflect the factors that affect generation of the prosodic phrase boundary better than existing learning features. Notably, moreover, such learning features, extracted according to the hand-crafted prosodic phrase boundary prediction rule, impart higher accuracy. We developed a statistical model for Korean prosodic phrase boundaries based on the proposed new features. The results were 86.63% accuracy for three levels (major break, minor break, no break) and 81.14% accuracy for six levels (major break with falling tone/rising tone, minor break with falling tone/rising tone/middle tone, no break).

Metrics Description Language : MDL4UML (메트릭 기술 언어 : MDL4UML)

  • Kim, Tae-Yeon;Park, Jin-Uk;Chae, Heung-Seok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10a
    • /
    • pp.50-51
    • /
    • 2007
  • UML을 이용한 소프트웨어의 설계가 널리 이용되고 있으므로 개발단계 초기의 소프트웨어 산출물인 UML을 대상으로 품질을 예측하는 메트릭의 개발 및 활용요구에 대응하기 위하여 메트릭 기술 언어를 개발 하였다. MDL4UML은 UML모델에 적용 가능한 메트릭을 기존 OCL을 이용하여 기술하였을 경우 메트릭의 표현이 복잡하고 측정 대상 UML모델의 깊은 이해가 선행되어야 하는 점을 보완하기 위하여 연구된 메트릭 기술 언어이다. 본 연구에서는 OCL을 이용한 메트릭 기술의 난해함을 보완하기 위한 수단인 MDL4UML을 정의하고 이를 지원하기 위한 도구로 METOOSE를 개발하였다.

  • PDF

Unstructured Data based a Study of Effectiveness about Prediction of Corporate Bankruptcy with a Real Case (실제 사례 기반 비정형 데이터를 활용한 기업의 부실징후 예측에 관한 효용성 연구)

  • JIN, Hoon;Hong, Jeoung-Pyo;Lee, Kang-Ho;Joo, Dong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.487-492
    • /
    • 2018
  • 4차산업 혁명의 여파로 국내에서는 다양한 분야에 인공지능과 빅데이터 기술을 활용하여 이전에 시행 중인 다양한 서비스 분야에 기술적 접목과 보완을 시도하고 있다. 특히 금융권에서 자금을 빌린 기업들을 대상으로 여신 안정성을 확보하고 선제적인 대응을 위해 온라인 뉴스기사들과 SNS 데이터 등을 이용하여 부실가능성을 예측하고 실제 업무에 도입하려는 시도들이 국내 주요 은행들을 중심으로 활발히 진행 중이다. 우리는 국내의 국책은행에서 수행한 비정형 데이터 기반의 기업의 부실징후 예측 시스템 개발 과정에서 시도된 다양한 분석 방법과 결과 그리고 과정 중에 발생한 문제점들에 관해 기술하고 관련 이슈들에 관하여 다룬다. 결과적으로 본 논문은 레이블이 없는 대량의 기사들에 레이블을 달기 위한 자동 태거(tagger) 개발과 뉴스 기사 예측 결과로부터 부실 가능성을 예측하기 위한 모델 및 성능 면에서 기사 예측 정확도 92%(AUC 0.96) 및 부실 가능성 기업 예측에서도 정형 데이터 분석결과에 견줄만한 성과를 이루었고 이에 관해 보고한다.

  • PDF