• Title/Summary/Keyword: 언어 사용역

Search Result 122, Processing Time 0.028 seconds

세계 속 건강마을을 찾아서 - 찾기 힘든 섬, 사르데냐 보물섬처럼 꼭꼭 숨어있는 장수마을

  • Lee, Won-Jong
    • 건강소식
    • /
    • v.36 no.8
    • /
    • pp.16-19
    • /
    • 2012
  • 사르데냐섬, 100세 이상노인이 240여 명 살고 있다는 곳. 제주도의 10배정도 되는 면적에 160만 명이 살고 있다. 사르데냐는 이탈리아 사람들에게도 그리 가기 쉬운 섬이 아니다. 로미의 중앙역인 테르미니역에서 한시간 반 동안 기치를 타고 시비타베키아 항구로 가서 또 7시간 배를 타야만 도달할 수 있다. 가기 힘든 만큼 예전에는 고립되어 본토와는 왕래가 드문 상태로 있었다. 이들 나름대로 조상대대로 사용해온 사르데냐 언어가 따로 있을 정도다.

  • PDF

A Design of Frame File Extension Tool for Korean PropBank (한국어 PropBank 프레임 파일 확장 도구 설계)

  • Lee, Jung-Kuk;Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.126-129
    • /
    • 2011
  • 본 논문에서는 한국어 PropBank의 구축을 위한 동사의 프레임 파일 확장 및 구축에 대한 연구를 논한다. 문장 단위의 의미 분석에 있어서 가장 중요하다고 볼 수 있는 의미 역 결정을 위해서 필요한 언어자원중, PropBank는 동사의 술어-논항 구조를 태그해 놓은 말뭉치로써 가장 널리 쓰이는 언어자원 중 하나이다. PropBank는 크게 술어-논항 구조를 태그한 말뭉치와 개별 동사들의 논항 구조를 기술한 프레임 파일로 이루어져 있다. 한국어 PropBank 구축을 위해서는 구문 표지 부착 말뭉치에 술어-논항 구조의 표지 부착 작업 및 한국어 동사의 프레임 파일의 구축 및 확장이 이루어져야 하는데, 본 논문에서는 세종 계획에서 발표한 용언 격틀 파일을 사용하여 기존의 한국어 PropBank 프레임 파일을 확장하는 도구를 설계하였다.

  • PDF

새로운 데이터 탐색 기술과 기법의 활용

  • Korea Database Promotion Center
    • Digital Contents
    • /
    • no.1 s.56
    • /
    • pp.84-91
    • /
    • 1998
  • 데이터베이스에 저장되는 데이터의 양은 급격히 증가되어 왔고, 사용자들은 필요한 데이터를 찾기 위해 서말이 넘는 땀방울을 흘려야 했다. 그러나 새로운 탐색 기술들이 이러한 문제에 대한 해답을 제시하고 있다. 자연언어 질의, 역-인덱싱, 인터넷 탐색 엔진, 데이터베이스 텍스트 탐색 같은 기술들은 사용자의 오랜 숙원을 해결해줄 기대주로 관심을 모으고 있다. 자유 형식 정보 소스들로부터 정보의 특별한 탐색과 추출을 수행하기 위해 사용 가능한 보다 새로운 탐색 기술들과 기법들을 소개한다.

  • PDF

An AutoEncoder Model based on Attention and Inverse Document Frequency for Classification of Creativity in Essay (에세이의 창의성 분류를 위한 어텐션과 역문서 빈도 기반의 자기부호화기 모델)

  • Se-Jin Jeong;Deok-gi Kim;Byung-Won On
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.624-629
    • /
    • 2022
  • 에세이의 창의성을 자동으로 분류하는 기존의 주요 연구는 말뭉치에서 빈번하게 등장하지 않는 단어에 초점을 맞추어 기계학습을 수행한다. 그러나 이러한 연구는 에세이의 주제와 상관없이 단순히 참신한 단어가 많아 창의적으로 분류되는 문제점이 발생한다. 본 논문에서는 어텐션(Attention)과 역문서 빈도(Inverse Document Frequency; IDF)를 이용하여 에세이 내용 전달에 있어 중요하면서 참신한 단어에 높은 가중치를 두는 문맥 벡터를 구하고, 자기부호화기(AutoEncoder) 모델을 사용하여 문맥 벡터들로부터 창의적인 에세이와 창의적이지 않은 에세이의 특징 벡터를 추출한다. 그리고 시험 단계에서 새로운 에세이의 특징 벡터와 비교하여 그 에세이가 창의적인지 아닌지 분류하는 딥러닝 모델을 제안한다. 실험 결과에 따르면 제안 방안은 기존 방안에 비해 높은 정확도를 보인다. 구체적으로 제안 방안의 평균 정확도는 92%였고 기존의 주요 방안보다 9%의 정확도 향상을 보였다.

  • PDF

Mental-state Talks of Mothers with 2-year-olds in Pretense/Role-play and Book Reading Contexts (만 2세 영아의 어머니가 가상/역할 놀이와 책읽기 맥락에서 사용하는 정신 상태 용어)

  • Kim, Hee Jin
    • Korean Journal of Childcare and Education
    • /
    • v.10 no.2
    • /
    • pp.133-151
    • /
    • 2014
  • The purpose of this study was to examine maternal mental-state talks while mothers and their 2-year-old children interacted in two contexts which were pretense/role-play and shared book reading contexts. Thirty-six dyads of mothers and their 2-year-old children participated in this study. The results showed that the mothers made more references to mental-state in the pretense/role-ply context than in the book reading context, but the ratio of using the three types of mental state talks(i.e., desire, feeling, and cognition) did not vary with the contexts. The most frequently used mental-state talk by the mothers was 'desire' in both contexts and the tendency to use the three types of mental-state talks in the two contexts was related. The results of this study suggest implications for providing useful information on the role of mothers in the development of children's theory of mind.

A Korean Corpus Analysis Tool for Language Information Acquisition (언어 정보 획득을 위한 한국어 코퍼스 분석 도구)

  • Lee, Ho;Kim, Jin-Dong;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1994.11a
    • /
    • pp.297-304
    • /
    • 1994
  • 코퍼스는 기계 가독형으로 개장되어 있는 실제 사용 언어의 집합으로 자연어 처리에 필요한 여러 가지 언어 정보를 내재하고 있다. 이들 정보는 코퍼스 분석기를 이용하여 획득할 수 있으며 용례와 각종 통계 정보 및 확률 정보, 연어 목록 등은 코퍼스에서 추출할 수 있는 대표적인 언어 정보들이다. 그러나 기존의 한국어 코퍼스 분석 도구들은 용례 추출 기능만을 보유하여 활용 범위가 제한되어 있었다. 이에 본 논문에서는 대량의 한국어 코퍼스를 분석하여 용례뿐만 아니라 자연어 처리의 제분야에서 필요한 언어 정보들을 추출하는 방법에 대해 연구하였으며 이의 검증을 위해 KCAT(Korean Corpus Analysis Tool)를 구현하였다. KCAT는 코퍼스 색인, 용례 추출, 통계 정보 추출, 연어 추출 부분으로 구성되어 있다. 용례 색인을 위해서는 여러 가지 사전과 용례 색인 구조가 필요한데 KCAT에서는 가변 차수 B-Tree 구조를 이용하여 사전을 구성하며 용례 색인을 위해 버킷 단위의 역 화일 구조를 이용한다. 질 좋은 용례의 추출을 위해 KCAT는 다양한 용례 연산 및 정렬 기능을 제공한다. 또한 통계적 방법의 자연어 처리 분야를 위해 어휘 확률, 상태 전이 확률, 관측 심볼 확률, 상호 정보, T-score 등을 제공하며, 기계 번역 분야에서 필요한 연어를 추출한다.

  • PDF

Context Based Real-time Korean Writing Correcting for Foriengers (외국인 학습자를 위한 문맥 기반 실시간 국어 문장 교정)

  • Park, Young-Keun;Choi, Jae-Sung;Kim, Jae-Min;Lee, Seong-Dong;Lee, Hyun-Ah
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.273-275
    • /
    • 2016
  • 외국인 유학생과 국내 체류 외국인을 포함하여 한국어를 학습하고자 하는 외국인이 지속적으로 증가함에 따라, 외국인 한국어 학습자의 교육에 대한 관심도 높아지고 있다. 기존 맞춤법 검사기는 한국어를 충분히 이해할 수 있는 한국인의 사용에 중점을 두고 있어, 외국인 한국어 학습자가 사용하기에는 다소 부적절하다. 본 논문에서는 한국어의 문맥 특성과 외국인의 작문 특성을 반영한 한국어 교정 방식을 제안한다. 제안하는 시스템에서는 말뭉치에서 추출한 어절 바이그램에 대한 음절 역색인을 구성하여 추천 표현을 빠르게 제시할 수 있으며, 키보드 후킹에 기반한 사용자인터페이스를 제공하여 사용자 편의를 높인다.

  • PDF

Detecting Errors in Dependency Treebank through XGBoost and Cross Validation (XGBoost와 교차 검증을 이용한 구문분석 말뭉치에서의 오류 탐지)

  • Choi, Min-Seok;Kim, Chang-Hyun;Cheon, Min-Ah;Park, Hyuk-Ro;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.103-107
    • /
    • 2020
  • 의존구조 말뭉치는 자연언어처리 분야에서 문장의 의존관계를 파악하는데 널리 사용된다. 이러한 말뭉치는 일반적으로 오류가 없다고 가정하지만, 현실적으로는 다양한 오류를 포함하고 있다. 이러한 오류들은 성능 저하의 요인이 된다. 이러한 문제를 완화하려고 본 논문에서는 XGBoost와 교차검증을 이용하여 이미 구축된 구문분석 말뭉치로부터 오류를 탐지하는 방법을 제안한다. 그러나 오류가 부착된 학습말뭉치가 존재하지 않으므로, 일반적인 분류기로서 오류를 검출할 수 없다. 본 논문에서는 분류기의 결과를 분석하여 오류를 검출하는 방법을 제안한다. 성능을 분석하려고 표본집단과 모집단의 오류 분포의 차이를 분석하였고 표본집단과 모집단의 오류 분포의 차이가 거의 없는 것으로 보아 제안된 방법이 타당함을 알 수 있었다. 앞으로 의미역 부착 말뭉치에 적용할 계획이다.

  • PDF

n-Gram/2L: A Space and Time Efficient Two-Level n-Gram Inverted Index Structure (n-gram/2L: 공간 및 시간 효율적인 2단계 n-gram 역색인 구조)

  • Kim Min-Soo;Whang Kyu-Young;Lee Jae-Gil;Lee Min-Jae
    • Journal of KIISE:Databases
    • /
    • v.33 no.1
    • /
    • pp.12-31
    • /
    • 2006
  • The n-gram inverted index has two major advantages: language-neutral and error-tolerant. Due to these advantages, it has been widely used in information retrieval or in similar sequence matching for DNA and Protein databases. Nevertheless, the n-gram inverted index also has drawbacks: the size tends to be very large, and the performance of queries tends to be bad. In this paper, we propose the two-level n-gram inverted index (simply, the n-gram/2L index) that significantly reduces the size and improves the query performance while preserving the advantages of the n-gram inverted index. The proposed index eliminates the redundancy of the position information that exists in the n-gram inverted index. The proposed index is constructed in two steps: 1) extracting subsequences of length m from documents and 2) extracting n-grams from those subsequences. We formally prove that this two-step construction is identical to the relational normalization process that removes the redundancy caused by a non-trivial multivalued dependency. The n-gram/2L index has excellent properties: 1) it significantly reduces the size and improves the Performance compared with the n-gram inverted index with these improvements becoming more marked as the database size gets larger; 2) the query processing time increases only very slightly as the query length gets longer. Experimental results using databases of 1 GBytes show that the size of the n-gram/2L index is reduced by up to 1.9${\~}$2.7 times and, at the same time, the query performance is improved by up to 13.1 times compared with those of the n-gram inverted index.

Implementation of a Module Scanning RSSI (RSSI 판독 모듈 구현)

  • Yim, Jae-Geol;Jeong, Seung-Hwan
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.1498-1501
    • /
    • 2007
  • 디지털 홈 네트워크가 활성화되면서 IEEE 802.11 기술 덕분에 가정은 물론 사무실과 학교, 병원, 역 등지에서도 무선 LAN을 이용한 인터넷 사용이 가능하다. 현재 가장 많이 사용되는 2.4GHz 대역의 802.11b, 802.11g 프로토콜에 대하여 RSSI를 판독할 수 있는 모듈을 C# 언어에서 구현한 사례와 이 모듈의 이용에 대하여 소개한다.