Kim, Jung-Ho;Kim, Myung-Kyu;Cha, Myung-Hoon;In, Joo-Ho;Chae, Soo-Hoan
Science of Emotion and Sensibility
/
v.13
no.3
/
pp.449-458
/
2010
As occasion demands to obtain efficient information from many documents and reviews on the Internet in many kinds of fields, automatic classification of opinion or thought is required. These automatic classification is called sentiment classification, which can be divided into three steps, such as subjective expression classification to extract subjective sentences from documents, sentiment classification to classify whether the polarity of documents is positive or negative, and strength classification to classify whether the documents have weak polarity or strong polarity. The latest studies in Opinion Mining have used N-gram words, lexical phrase pattern, and syntactic phrase pattern, etc. They have not used single word as feature for classification. Especially, patterns have been used frequently as feature because they are more flexible than N-gram words and are also more deterministic than single word. Theses studies are mainly concerned with English, other studies using patterns for Korean are still at an early stage. Although Korean has a slight difference in the meaning between predicates by the change of endings, which is 'Eomi' in Korean, of declinable words, the earlier studies about Korean opinion classification removed endings from predicates only to extract stems. Finally, this study introduces the earlier studies and methods using pattern for English, uses extracted sentimental patterns from Korean documents, and classifies polarities of these documents. In this paper, it also analyses the influence of the change of endings on performances of opinion classification.
The Journal of Korean Institute of Communications and Information Sciences
/
v.25
no.12B
/
pp.2094-2108
/
2000
오류를 수반하는 통신망을 통한 멀티미디어 데이터의 응용은 최근 그 수요가 급증하고 있다. 하지만 그 구현은 많은 문제점들을 야기하는데, 전송된 비디오 데이터에 발생한 오류를 처리하는 문제가 그 중 하나이다. 이는 압축된 비트열에 발생한 오류가 영상의 시-공간 방향으로 심각한 전파 현상을 수반하기 때문이다. 이러한 심각한 오류 전파를 완화하기 위해 본 논문에서는 EREC라 알려진 오류 제한 기법을 적용하고, 적용된 EREC의 오류 전파 특성을 분석하였다. 이를 통해, 압축 부호화된 하나의 기본 블록 (매크로 블록)이 복호시 오류가 생길 확률을 추정하였으며, 추정된 확률의 근사를 통해 양 끝단(전송단과 수신단)에서의 비디오 화질 열화를 예측하였다. 추정 확률의 근사는 매 기본 블록에서 발생된 비트수에 대한 그 기본 블록이 복호시 오류가 생길 확률을 간단한 1차식을 통한 선형 회귀법으로 모델링 되었으며, 따라서 간단한 방법을 통해 양 끝단의 화질 열화를 효과적으로 예측할 수 있었다. 부호화된 비트열이 전송 오류에 보다 강인하게 되도록 하기 위해, 본 논문에서 개발된 화질 열화 모델을 양자화기 선택에 적용함으로써, 새로운 최적 양자화 기법을 제시하였다. 본 논문에서 제안된 최적 양자화 기법은, 기존의 양자기 최적화 기법들과는 달리, 복호단에서의 복원 영상 화질이 주어진 비트율에서 최적이 되도록 양자화를 수행한다. H.263 비디오 압축 규격에 적용한 제안 양자화 기법의 실험 결과를 통해, 제안 기법이 매우 적은 계산상의 부하를 비용으로 객관적 화질은 물론 주관적 화질까지 크게 개선할 수 있음을 확인할 수 있었다.내었다.Lc. lacti ssp. lactis의 젖산과 초산의 생성량은 각각 0.089, 0.003과 0.189, 0.003M이었다. 따라서 corn steep liquor는 L. fermentum와 Lc. lactis ssp, lactis 의 생장을 위해 질소 또는 탄소 공급원으로서 배지에 첨가 될 수 있는 우수한 농업 부산물로 판단되었다.징하며 WLWQ에 적용되는 몇 가지 제약을 관찰하고 이를 일반적인 언어원리로 설명한다. 첫째, XP는 주어로만 해석되는데 그 이유는 XP가 목적어 혹은 부가어 등 다른 기능을 할 경우 생략 부위가 생략의 복원 가능선 원리 (the deletion-up-to recoverability principle)를 위배하기 때문이다. 둘째, WLWQ가 내용 의문문으로만 해석되는데 그 이유는 양의 공리(the maxim of quantity: Grice 1975) 때문이다. 평서문으로 해석될 경우 WP에 들어갈 부분이 XP의 자질의 부분집합에 불과하므로 명제가 아무런 정보제공을 하지 못한다. 반면 의문문 자체는 정보제공을 추구하지 않으므로 앞에서 언급한 양의 공리로부터 자유롭다. 셋째, WLWQ의 XP는 주제어 표지 ‘는/-은’을 취하나 주어표지 ‘가/-이’는 취하지 못한다(XP-는/-은 vs. XP-가/-이). 이는 IP내부 에 비공범주의 존재 여부에 따라 C의 음운형태(PF)가 시성이 정해진다는 가설로 설명하고자 했다. WLWQ에 대한 우리의 논의가 옳다면, 본 논문은 다음과 같은 이론적 함의를 기닌다. 첫째, WLWQ의 존재는 생략에 대한 두 이론 즉 LF 복사 이론과 PF 삭제 이론
Journal of the Korean Society for Library and Information Science
/
v.57
no.1
/
pp.93-114
/
2023
Information extraction can facilitate the intensive analysis of documents by providing semantic triples which consist of named entities and their relations recognized in the texts. However, most of the research so far has been carried out separately for named entity recognition and relation extraction as individual studies, and as a result, the effective performance evaluation of the entire information extraction systems was not performed properly. This paper introduces two models of end-to-end information extraction that can extract various entity names in clinical records and their relationships in the form of semantic triples, namely pipeline and joint models and compares their performances in depth. The pipeline model consists of an entity recognition sub-system based on bidirectional GRU-CRFs and a relation extraction module using multiple encoding scheme, whereas the joint model was implemented with a single bidirectional GRU-CRFs equipped with multi-head labeling method. In the experiments using i2b2/VA 2010, the performance of the pipeline model was 5.5% (F-measure) higher. In addition, through a comparative experiment with existing state-of-the-art systems using large-scale neural language models and manually constructed features, the objective performance level of the end-to-end models implemented in this paper could be identified properly.
Journal of the Korean Society for Library and Information Science
/
v.57
no.2
/
pp.435-452
/
2023
This study experimented with automatic classification of subject headings using BERT-based transfer learning model, and analyzed its performance. This study analyzed the classification performance according to the main class of KDC classification and the category type of subject headings. Six datasets were constructed from Korean national bibliographies based on the frequency of the assignments of subject headings, and titles were used as classification features. As a result, classification performance showed values of 0.6059 and 0.5626 on the micro F1 and macro F1 score, respectively, in the dataset (1,539,076 records) containing 3,506 subject headings. In addition, classification performance by the main class of KDC classification showed good performance in the class General works, Natural science, Technology and Language, and low performance in Religion and Arts. As for the performance by the category type of the subject headings, the categories of plant, legal name and product name showed high performance, whereas national treasure/treasure category showed low performance. In a large dataset, the ratio of subject headings that cannot be assigned increases, resulting in a decrease in final performance, and improvement is needed to increase classification performance for low-frequency subject headings.
This study is concerned on Why The Certified Security certification is needed and How to control the security quality to get better service to the clients. Theses days are required The Certified Certificate in all the industry. And in this point of view, the certified certificate is a kind of confirmation by an authority to the person who has how much special knowledge and practice in a certain field. Moreover, in the functionalism society the certified certificate system would be very positive effect to the related industry and society as official measurement by an authority. The security is freedom from fear and anxiety. Which means the security can not be operated in isolation from citizen's safe-living expectation, and which is also dealing with valuable human being's life. For getting the better purpose the security industry employees should have more organized special training and education. As my understanding the certified certificate exam system is the confirmation by an authority, the certified certificate is only neutral evidence to get the confidence and credit from the clients. In this point of view the core point is How to control The Certified Certificate by a credied authority.
The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.