• Title/Summary/Keyword: 언어평가

Search Result 1,675, Processing Time 0.026 seconds

CEFR-based Sentence Writing Assessment using Bilingual Corpus (병렬 말뭉치를 이용한 CEFR 기반 문장 작문 평가)

  • Sung-Kwon Choi;Oh-Woog Kwon
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.54-57
    • /
    • 2023
  • CEFR(Common European Framework of Reference for Language)는 유럽 전역의 교육기관에서 언어구사 능력을 평가하는 평가 기준이다. 본 논문은 학습자가 문장 작문한 것을 CEFR 에 기반하여 평가하는 모델을 기술하는 것을 목표로 한다. CEFR 기반 문장 작문 평가는 크게 전처리 단계, 작문 단계, 평가 단계로 구성된다. CEFR 기반 문장 작문 평가 모델의 평가는 CEFR 수준별로 분류한 문장들이 전문가의 수동 분류와 일치하는 지의 정확도와 학습자가 작문한 결과의 자동 평가로 측정되었다. 실험은 독일어를 대상으로 하였으며 독일어 전공 41 명의 대학생에게 CEFR 6 등급별로 5 문장씩 총 30 문장의 2 세트를 만들어 실험을 실시하였다. 그 결과 CEFR 등급별 자동 분류는 전문가의 수동 분류와 61.67%로 일치하는 정확도를 보였다.

Homonym Disambiguation based on Average Mutual Information (평균 상호정보량에 기반한 동음이의어 중의성 해소)

  • Hur, Jeong;Jang, Myung-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.159-166
    • /
    • 2005
  • 자연언어처리의 목적은 컴퓨터가 자연어를 이해할 수 있도록 하여, 인간에게 다양한 정보를 정확하고 빠르게 전달할 수 있도록 하고자 하는 것이다. 이를 위해서는 언어의 의미를 정확히 파악하여야 하는데, 어휘 의미 중의성 해소가 필수적인 기술이다. 본 연구에서는 평균 상호정보량에 기반한 동음이의어 의미 중의성 해소 기술을 소개한다. 사전 뜻풀이를 이용하는 기존 연구들은 어휘들간의 정확한 매칭에 의존하기 때문에 자료부족 현상이 심각하였다. 그러나, 본 연구에서는 어휘들간의 연관계수인 상호정보량을 이용함으로써 이 문제를 완화시켰다. 또한, 상호정보량을 가지는 어휘 쌍의 비율, 의미 별 빈도 정보와 뜻풀이의 길이를 가중치로 반영하였다. 본 시스템의 평가를 위해 질의응답 평가셋의 500여 개의 질의와 정답단락을 대상으로 동음이의어 의미 중의성 해소 평가셋을 구축하였다. 평가셋에 기반하여 두 가지 유형의 실험을 수행하였다. 실험 결과는 평균 상호정보량만을 이용하였을 때 62.04%의 정확률을 보였고, 가중치를 활용하였을 때 83.42%의 정확률을 보였다.

  • PDF

An Automated Essay Scoring Pipeline Model based on Deep Neural Networks Reflecting Argumentation Structure Information (논증 구조 정보를 반영한 심층 신경망 기반 에세이 자동 평가 파이프라인 모델)

  • Yejin Lee;Youngjin Jang;Tae-il Kim;Sung-Won Choi;Harksoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.354-359
    • /
    • 2022
  • 에세이 자동 평가는 주어진 에세이를 읽고 자동으로 평가하는 작업이다. 본 논문에서는 효과적인 에세이 자동 평가 모델을 위해 Argument Mining 작업을 사용하여 에세이의 논증 구조가 반영된 에세이 표현을 만들고, 에세이의 평가 항목별 표현을 학습하는 방법을 제안한다. 실험을 통해 제안하는 에세이 표현이 사전 학습 언어 모델로 얻은 표현보다 우수함을 입증했으며, 에세이 평가를 위해 평가 항목별로 다른 표현을 학습하는 것이 보다 효과적임을 보였다. 최종 제안 모델의 성능은 QWK 기준으로 0.543에서 0.627까지 향상되어 사람의 평가와 상당히 일치한다.

  • PDF

Null Subjects in Crosslinguistic Acquisition Data and Theoretical Implications (주어 탈락 현상의 언어간 비교와 이론적 모색)

  • Kim, Young-Joo
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.264-280
    • /
    • 1995
  • 한 문장의 주어가 우리말에서처럼 수의적으로 나타날 수 있는가 혹은 영어에서처럼 반드시 표면에 나타나야 하는가에 따라 공주어언어 (null-subject language)와 비공주어언어(non-null-subject language)로 분류된다. 이러한 주어 탈락 현상에 대하여 이론적으로 다양한 가설이 제기되어 왔다. 본 논문에서는 한국어의 언어 습득 자료에 나타나는 주어 탈락의 양상을 살피고, 이를 비공주어언어인 영어자료와 공주어언어인 이탈리아어, 포르투갈어, 중국어자료와 비교함으로써 궁극적으로 이론적 가설을 비교 평가하는 데 이바지하고자 한다.

  • PDF

A Study on the Construction of an Emotion Corpus Using a Pre-trained Language Model (사전 학습 언어 모델을 활용한 감정 말뭉치 구축 연구 )

  • Yeonji Jang;Fei Li;Yejee Kang;Hyerin Kang;Seoyoon Park;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.238-244
    • /
    • 2022
  • 감정 분석은 텍스트에 표현된 인간의 감정을 인식하여 다양한 감정 유형으로 분류하는 것이다. 섬세한 인간의 감정을 보다 정확히 분류하기 위해서는 감정 유형의 분류가 무엇보다 중요하다. 본 연구에서는 사전 학습 언어 모델을 활용하여 우리말샘의 감정 어휘와 용례를 바탕으로 기쁨, 슬픔, 공포, 분노, 혐오, 놀람, 흥미, 지루함, 통증의 감정 유형으로 분류된 감정 말뭉치를 구축하였다. 감정 말뭉치를 구축한 후 성능 평가를 위해 대표적인 트랜스포머 기반 사전 학습 모델 중 RoBERTa, MultiDistilBert, MultiBert, KcBert, KcELECTRA. KoELECTRA를 활용하여 보다 넓은 범위에서 객관적으로 모델 간의 성능을 평가하고 각 감정 유형별 정확도를 바탕으로 감정 유형의 특성을 알아보았다. 그 결과 각 모델의 학습 구조가 다중 분류 말뭉치에 어떤 영향을 주는지 구체적으로 파악할 수 있었으며, ELECTRA가 상대적으로 우수한 성능을 보여주고 있음을 확인하였다. 또한 감정 유형별 성능을 비교를 통해 다양한 감정 유형 중 기쁨, 슬픔, 공포에 대한 성능이 우수하다는 것을 알 수 있었다.

  • PDF

Probing Semantic Relations between Words in Pre-trained Language Model (사전학습 언어모델의 단어간 의미관계 이해도 평가)

  • Oh, Dongsuk;Kwon, Sunjae;Lee, Chanhee;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.237-240
    • /
    • 2020
  • 사전학습 언어모델은 다양한 자연어처리 작업에서 높은 성능을 보였다. 하지만, 사전학습 언어모델은 문장 내 문맥 정보만을 학습하기 때문에 단어간 의미관계 정보를 추론하는데는 한계가 있다. 최근에는, 사전학습 언어모델이 어느수준으로 단어간 의미관계를 이해하고 있는지 다양한 Probing Test를 진행하고 있다. 이러한 Test는 언어모델의 강점과 약점을 분석하는데 효율적이며, 한층 더 인간의 언어를 정확하게 이해하기 위한 모델을 구축하는데 새로운 방향을 제시한다. 본 논문에서는 대표적인 사전 학습기반 언어모델인 BERT(Bidirectional Encoder Representations from Transformers)의 단어간 의미관계 이해도를 평가하는 3가지 작업을 진행한다. 첫 번째로 단어 간의 상위어, 하위어 관계를 나타내는 IsA 관계를 분석한다. 두번째는 '자동차'와 '변속'과 같은 관계를 나타내는 PartOf 관계를 분석한다. 마지막으로 '새'와 '날개'와 같은 관계를 나타내는 HasA 관계를 분석한다. 결과적으로, BERTbase 모델에 대해서는 추론 결과 대부분에서 낮은 성능을 보이지만, BERTlarge 모델에서는 BERTbase보다 높은 성능을 보였다.

  • PDF

How are they layerwisely 'surprised', KoBERT and KR-BERT? (KoBERT와 KR-BERT의 은닉층별 통사 및 의미 처리 성능 평가)

  • Choi, Sunjoo;Park, Myung-Kwan;Kim, Euhee
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.340-345
    • /
    • 2021
  • 최근 많은 연구들이 BERT를 활용하여, 주어진 문맥에서 언어학/문법적으로 적절하지 않은 단어를 인지하고 찾아내는 성과를 보고하였다. 하지만 일반적으로 딥러닝 관점에서 NLL기법(Negative log-likelihood)은 주어진 문맥에서 언어 변칙에 대한 정확한 성격을 규명하기에는 어려움이 있다고 지적되고 있다. 이러한 한계를 해결하기 위하여, Li et al.(2021)은 트랜스포머 언어모델의 은닉층별 밀도 추정(density estimation)을 통한 가우시안 확률 분포를 활용하는 가우시안 혼합 모델(Gaussian Mixture Model)을 적용하였다. 그들은 트랜스포머 언어모델이 언어 변칙 예문들의 종류에 따라 상이한 메커니즘을 사용하여 처리한다는 점을 보고하였다. 이 선행 연구를 받아들여 본 연구에서는 한국어 기반 언어모델인 KoBERT나 KR-BERT도 과연 한국어의 상이한 유형의 언어 변칙 예문들을 다른 방식으로 처리할 수 있는지를 규명하고자 한다. 이를 위해, 본 연구에서는 한국어 형태통사적 그리고 의미적 변칙 예문들을 구성하였고, 이 예문들을 바탕으로 한국어 기반 모델들의 성능을 놀라움-갭(surprisal gap) 점수를 계산하여 평가하였다. 본 논문에서는 한국어 기반 모델들도 의미적 변칙 예문을 처리할 때보다 형태통사적 변칙 예문을 처리할 때 상대적으로 보다 더 높은 놀라움-갭 점수를 보여주고 있음을 발견하였다. 즉, 상이한 종류의 언어 변칙 예문들을 처리하기 위하여 다른 메커니즘을 활용하고 있음을 보였다.

  • PDF

성대결절의 음성평가에서 주관적 평가와 객관적 평가간의 관계 분석

  • 윤영선;이은경;손영익;백정환;추광철
    • Proceedings of the KSLP Conference
    • /
    • 1999.11a
    • /
    • pp.181-181
    • /
    • 1999
  • 배경 : 음성평가에서는 기기를 이용한 객관적인 평가뿐만 아니라 청지각에 의한 주관적 평가가 매우 비중 있게 다루어져 왔다. 목적 : 본 연구에서는 객관적인 평가 중 음향학적 분석인 MDVP(Multidimensional Voice Program)의 지표들과 주관적 평가로 알려진 GRBAS점수를 비교하여 이들의 상관관계 정도를 성대결절을 대상으로 알아보고자 하였다. (중략)

  • PDF

Evaluation Method of Machine Translation System (기계번역 성능평가를 위한 핵심어 전달율 측정방안)

  • Yu, Cho-Rong;Lee, Young-Jik;Park, Jun
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.241-245
    • /
    • 2003
  • 본 논문은 기계번역 시스템의 성능평가를 위한 '핵심어 전달율 측정' 방안에 대해서 기술한다. 기계번역 시스템의 성능평가는 두 가지 측면으로 고려될 수 있다. 첫 번째는 객관적인 평가로 IBM에서 주창한 BLEU score 측정이나 NIST의 NIST score 측정이 그 예이다. 객관적인 평가는 평가자의 주관적인 판단이나 언어적인 특성을 배제한 방법으로 프로그램을 통해 자동으로 fluency와 adequacy를 측정하여 성능을 평가한다. 다음은 주관적인 평가이다. 주관적인 평가는 평가자의 평가를 통해 번역의 품질을 평가하는 방법이다. 주관적 평가 방법의 대표적인 것으로는 NESPOLE이나 LDC가 있다. 주관적인 평가는 평가자의 정확한 판단으로 신뢰할만한 성능평가 결과를 도출하지만, 시간과 비용이 많이 들고, 재사용할 수 없다는 단점이 있다. 본 논문에서는 이러한 문제를 해결하기 위해, 번역대상 문장에서 핵심어를 추출하고, 그 핵심어가 기계번역 시스템의 수행결과에 전달된 정도를 자동으로 측정하는 새로운 평가방법인 '핵심어 전달율 측정' 방안을 제안한다. 이는 성능평가의 비용과 시간을 절약하고, 주관적 평가와 유사한 신뢰성 있는 평가결과를 얻을 수 있는 좋은 지표가 될 수 있을 것으로 기대한다.

  • PDF