• Title/Summary/Keyword: 언어평가

Search Result 1,675, Processing Time 0.026 seconds

Saken: A Korean Event Recognizer (Saken: 한국어 사건 인식 시스템)

  • You, Hyun-Jo;Kim, Moonhyung;Junho, Juliano P.;Nam, Seungho;Shin, Hyopil
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.25-30
    • /
    • 2009
  • 한국어 자연언어 텍스트에서 사건을 자동으로 인식하기 위한 Saken 태거를 소개하고자 한다. Saken 태거는 한국어 사건 및 시간의 자동 인식을 위한 시스템인 한국어 TARSQI 툴킷을 구성하는 하나의 모듈로 개발된 것이나 독립적으로 사건 추출 도구로 사용될 수도 있다. Saken 태거는 미리 구축된 사건의 목록이나 특정 도메인으로 적용 대상을 제한하지 않고 보편적으로 사용될 수 있는 사건 분석기를 지향하고 있다. 이 논문에서는 사건 태깅을 위한 언어학적 배경과 Saken 태거를 구성하는 세부 모듈을 소개하고 신문 기사를 이용한 평가 실험 결과를 분석할 것이다.

  • PDF

Improving Stack LSTMs by Combining Syllables and Morphemes for Korean Dependency Parsing (Stack LSTM 기반 한국어 의존 파싱을 위한 음절과 형태소의 결합 단어 표상 방법)

  • Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Kangil
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.9-13
    • /
    • 2016
  • Stack LSTM기반 의존 파싱은 전이 기반 파싱에서 스택과 버퍼의 내용을 Stack LSTM으로 인코딩하여 이들을 조합하여 파서 상태 벡터(parser state representation)를 유도해 낸후 다음 전이 액션을 결정하는 방식이다. Stack LSTM기반 의존 파싱에서는 버퍼 초기화를 위해 단어 표상 (word representation) 방식이 중요한데, 한국어와 같이 형태적으로 복잡한 언어 (morphologically rich language)의 경우에는 무수히 많은 단어가 파생될 수 있어 이들 언어에 대해 단어 임베딩 벡터를 직접적으로 얻는 방식에는 한계가 있다. 본 논문에서는 Stack LSTM 을 한국어 의존 파싱에 적용하기 위해 음절-태그과 형태소의 표상들을 결합 (hybrid)하여 단어 표상을 얻어내는 합성 방법을 제안한다. Sejong 테스트셋에서 실험 결과, 제안 단어 표상 방법은 음절-태그 및 형태소를 이용한 방법을 더욱 개선시켜 UAS 93.65% (Rigid평가셋에서는 90.44%)의 우수한 성능을 보여주었다.

  • PDF

Performance Evaluation of Large Vocabulary Continuous Speech Recognition System (대어휘 연속음성 인식 시스템의 성능평가)

  • Kim Joo-Gon;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.99-102
    • /
    • 2002
  • 본 논문에서는 한국어 대어휘 연속음성 인식 시스템의 성능향상을 위하여 Multi-Pass 탐색 방법을 도입하고, 그 유효성을 확인하고자 한다. 연속음성 인식실험을 위하여, 최근 실험용으로 널리 사용되고 있는 HTK와 Multi-Pass 탐색 방법을 이용한 음성인식 시스템의 비교 실험을 수행한다. 대어휘 연속음성 인식 시스템에 사용한 언어 모델은 ARPA 표준 형식의 단어 N-gram 언어모델로, 1-pass에서는 2-gram 언어모델을, 2-pass 에서는 역방향 3-gram 언어모델을 이용하여 Multi-Pass 탐색 방법으로 인식을 수행한다. 본 논문에서는 Multi-Pass 탐색 방법을 한국어 연속음성인식에 적합하게 구성한 후, 다양한 한국어 음성 데이터 베이스를 이용하여 인식실험을 수행하였다. 그 결과, 전화망을 통하여 수집된 잡음이 포함된 증권거래용 연속음성 데이터 베이스를 이용한 연속음성 인식실험에서 HTK가 $59.50\%$, Multi-Pass 탐색 방법을 이용한 시스템은 $73.31\%$의 인식성능을 나타내어 HTK를 이용한 연속음성 인식률 보다 약 $13\%$의 인식률 향상을 나타내었다.

  • PDF

Word Alignment Using Chinese-Korean Linguistic Contrastive Information (중-한 대조분석정보를 이용한 단어정렬)

  • Li, Jin-Ji;Kim, Dong-Il;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2002.10e
    • /
    • pp.40-46
    • /
    • 2002
  • 본 논문에서는 범용 병렬코퍼스에서도 적용할 수 있는 단어정렬의 방법을 제안한다. 단어 단위로 정렬된 병렬코퍼스는 자연언어처리의 다양한 분야에 도움을 준다. 예를 들면 변환기반의 기계번역에서 변환패턴의 구축, MWTU(Multi Word Translation Unit)의 자동추출, 사전 구축, 의미 중의성 해소 등 분야에 적용된다. 중한 병렬 코퍼스의 단어정렬은 서로 다른 어족간의 관계의 규명을 포함하고 있기 때문에 본 논문에서는 통계적인 모델보다 중한 대역어 사전, 단일어 시소러스, 품사정보 및 언어학적 대조분석 정보 등 기존에 있는 리소스를 이용하여 재현율과 정확률을 높이는 방법에 대해 제시한다. 성능 평가를 위해 중앙일보에서 임의로 추출한 500개 대응문장을 이용하여 실험한 결과 82.2%의 정확률과 64.8%의 재현율을 보였다.

  • PDF

A Comparative Study on the Effectiveness of Hangul Natural Language Retrieval Using KT Test Set (KT Test Set을 이용한 우리말 자연언어검색의 효율성에 관한 비교연구)

  • 이현아;김성혁
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 1995.08a
    • /
    • pp.37-40
    • /
    • 1995
  • 본 연구는 자연언어시스템에서 색인어와 탐색어의 특정성에 기인하는 재현율 감소를 극복하기 위한 방법론으로써 탐색어의 확장을 통한 검색효율을 평가하였다. 이를 위하여 우리말 데이터베이스를 대상으로 주제전문가가 자연언어로 작성한 원 질의문 (Q1), 원 질의문에 사용된 탐색어와 데이터베이스내의 색인어간의 유사도를 이용하여 탐색어를 확장한 질의문 (Q2(0.2), Q2(0.3)), 주제전문가인 이용자가 Q1의 의미적인 관계를 고려해서 자연언어로 탐색어를 확장한 질의문 (Q3)을 검색효율면에서 비교하였다. 실험결과, 평균재현율은 Q2(0.2), Q2(0.3), Q3, Q1의 검색의 순이었다. 평균정확율은 Q3, Q2(0.3), Q1, Q2(0.2)검색의 순으로 나타났다.

  • PDF

A Follow-Up Case of Voice Changes in Acute COVID-19 Infection (급성 COVID-19 감염의 음성 변화 추적 관찰 1예)

  • Seung Jin, Lee
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.33 no.3
    • /
    • pp.183-187
    • /
    • 2022
  • Dysphonia is well known as one of the otolaryngological symptoms of coronavirus disease 2019 (COVID-19) infection. The vocal changes of the COVID-19 condition have been reported in terms of parameters of multi-dimensional voice assessment, including acoustic analysis, auditory-perceptual evaluation, and psychometric assessment. However, there has not been a daily followup study in patients with acute COVID-19 infection. In this study, a 41-year-old male performed daily voice recordings of vowel phonation and passage-reading tasks during the self-quarantine period of one week. Compared to the normal voice status of the prepandemic period, voice abnormalities peaked on day two after the diagnosis of COVID-19 infection and recovered after one week.

Korean Morpheme Restoration and Segmentation based on Transformer (트랜스포머 기반 한국어 형태소 원형복원 및 분리)

  • Hyeong Jin Shin;Jeongyeon Park;Jae Sung Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.403-406
    • /
    • 2022
  • 최근 한국어 언어 모델이나 단어 벡터 생성 등에서는 효과적인 토큰을 만들기 위해 품사 태그 없이 형태소 열만을 사용하고 있다. 본 논문에서는 입력 문장에 대해 품사 태그열 생성없이 형태소 열만을 직접 출력하는 효율적인 모델을 제안한다. 특히, 자연어처리에서 적합한 트랜스포머를 활용하기 위해, 입력 음절과 원형 복원된 형태소 조각이 1:1로 대응되는 새로운 형태소 태깅 방법을 제안한다. 세종 품사 부착 말뭉치를 대상으로 평가해 본 결과 공개 배포되어 있는 기존 형태소 분석 모델들보다 형태소 단위 F1 기준으로 약 7%에서 14% 포인트 높은 성능을 보였다.

  • PDF

DBERT: Embedding Model Based on Contrastive Learning Considering the Characteristics of Multi-turn Context (DBERT: 멀티턴 문맥의 특징을 고려한 대조 학습 기반의 임베딩 모델링)

  • Sangmin Park;Jaeyun Lee;Jaieun Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.272-274
    • /
    • 2022
  • 최근에는 사람과 기계가 자유롭게 대화를 주고받을 수 있는 자유 주제 대화 시스템(Open-domain Dialogue System)이 다양한 서비스에 활용되고 있다. 자유 주제 대화 시스템이 더욱 다양한 답변을 제공할 수 있도록 사전학습 기반의 생성 언어모델이 활용되고 있지만, 답변 제공의 안정성이 떨어져 검색을 활용한 방법 또한 함께 활용되고 있다. 검색 기반 방법은 사용자의 대화가 들어오면 사전에 구축된 데이터베이스에서 유사한 대화를 검색하고 준비되어있는 답변을 제공하는 기술이다. 하지만 멀티턴으로 이루어진 대화는 일반적인 문서의 문장과 다르게 각 문장에 대한 발화의 주체가 변경되기 때문에 연속된 발화 문장이 문맥적으로 밀접하게 연결되지 않는 경우가 있다. 본 논문에서는 이와 같은 대화의 특징을 고려하여 멀티턴 대화를 효율적으로 임베딩 할 수 있는 DBERT(DialogueBERT) 모델을 제안한다. 기존 공개된 사전학습 언어모델 기반의 문장 임베딩 모델과 비교 평가 실험을 통해 제안하는 방법의 우수성을 입증한다.

  • PDF

Multi Sentence Summarization Method using Similarity Clustering of Word Embedding (워드 임베딩의 유사도 클러스터링을 통한 다중 문장 요약 생성 기법)

  • Lee, Pil-Won;Song, Jin-su;Shin, Yong-Tae
    • Annual Conference of KIPS
    • /
    • 2021.05a
    • /
    • pp.290-292
    • /
    • 2021
  • 최근 인코더-디코더 구조의 자연어 처리모델이 활발하게 연구가 이루어지고 있다. 인코더-디코더기반의 언어모델은 특히 본문의 내용을 새로운 문장으로 요약하는 추상(Abstractive) 요약 분야에서 널리 사용된다. 그러나 기존의 언어모델은 단일 문서 및 문장을 전제로 설계되었기 때문에 기존의 언어모델에 다중 문장을 요약을 적용하기 어렵고 주제가 다양한 여러 문장을 요약하면 요약의 성능이 떨어지는 문제가 있다. 따라서 본 논문에서는 다중 문장으로 대표적이고 상품 리뷰를 워드 임베딩의 유사도를 기준으로 클러스터를 구성하여 관련성이 높은 문장 별로 인공 신경망 기반 언어모델을 통해 요약을 수행한다. 제안하는 모델의 성능을 평가하기 위해 전체 문장과 요약 문장의 유사도를 측정하여 요약문이 원문의 정보를 얼마나 포함하는지 실험한다. 실험 결과 기존의 RNN 기반의 요약 모델보다 뛰어난 성능의 요약을 수행했다.

Attention Patterns and Semantics of Korean Language Models (한국어 언어모델 주의집중 패턴과 의미적 대표성)

  • Yang, Kisu;Jang, Yoonna;Lim, Jungwoo;Park, Chanjun;Jang, Hwanseok;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.605-608
    • /
    • 2021
  • KoBERT는 한국어 자연어처리 분야에서 우수한 성능과 확장성으로 인해 높은 위상을 가진다. 하지만 내부에서 이뤄지는 연산과 패턴에 대해선 아직까지 많은 부분이 소명되지 않은 채 사용되고 있다. 본 연구에서는 KoBERT의 핵심 요소인 self-attention의 패턴을 4가지로 분류하며 특수 토큰에 가중치가 집중되는 현상을 조명한다. 특수 토큰의 attention score를 층별로 추출해 변화 양상을 보이고, 해당 토큰의 역할을 attention 매커니즘과 연관지어 해석한다. 이를 뒷받침하기 위해 한국어 분류 작업에서의 실험을 수행하고 정량적 분석과 함께 특수 토큰이 갖는 의미론적 가치를 평가한다.

  • PDF