Annual Conference on Human and Language Technology
/
2021.10a
/
pp.22-27
/
2021
언어 모델은 많은 데이터와 많은 파라미터로 오래 사전학습을 수행할수록 그 성능이 높아지지만, 그 크기가 큰 만큼 거대 언어 모델은 너무 큰 크기로 인해서 실사용에 많은 하드웨어 리소스를 필요로 한다. 본 논문에서는 거대 언어 모델 중 하나인 T5의 인코더-디코더 구조 대비 절반의 크기를 가지는 PrefixLM 구조에 기반한 한국어 모델을 학습하여 자연어 처리에서 중요한 태스크 중 하나인 텍스트 생성 요약 태스크에서의 성능평가를 하여 BART, T5와 비교하여 각각 0.02, 0.0859의 성능 향상을 보였다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.292-297
/
2020
자연어 추론 모델은 전제와 가설 사이의 의미 관계를 함의와 모순, 중립 세 가지로 판별한다. 영어에서는 RTE(recognizing textual entailment) 데이터셋과 다양한 NLI(Natural Language Inference) 데이터셋이 이러한 모델을 개발하고 평가하기 위한 벤치마크로 공개되어 있다. 본 연구는 국외의 텍스트 추론 데이터 주석 가이드라인 및 함의 데이터를 언어학적으로 분석한 결과와 함의 및 모순 관계에 대한 의미론적 연구의 토대 위에서 한국어 자연어 추론 벤치마크 데이터 구축 방법론을 탐구한다. 함의 및 모순 관계를 주석하기 위하여 각각의 의미 관계와 관련된 언어 현상을 정의하고 가설을 생성하는 방안에 대하여 제시하며 이를 바탕으로 실제 구축될 데이터의 형식과 주석 프로세스에 대해서도 논의한다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.486-489
/
2021
본 논문에서는 KorBERT 한국어 언어모델에 기반하여 텍스트 분류문제를 빈칸채우기 문제로 변환하고 빈칸에 적합한 어휘를 예측하는 방식의 프롬프트기반 분류모델에 대해서 소개한다. [CLS] 토큰을 이용한 헤드기반 분류와 프롬프트기반 분류는 사전학습의 NSP모델과 MLM모델의 특성을 반영한 것으로, 텍스트의 의미/구조적 분석과 의미적 추론으로 구분되는 텍스트 분류 태스크에서의 성능을 비교 평가하였다. 의미/구조적 분석 실험을 위해 KLUE의 의미유사도와 토픽분류 데이터셋을 이용하였고, 의미적 추론 실험을 위해서 KLUE의 자연어추론 데이터셋을 이용하였다. 실험을 통해, MLM모델의 특성을 반영한 프롬프트기반 텍스트 분류에서는 의미유사도와 토픽분류 태스크에서 우수한 성능을 보였고, NSP모델의 특성을 반영한 헤드기반 텍스트 분류에서는 자연어추론 태스크에서 우수한 성능을 보였다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.507-508
/
2021
최근 한국어 자연어처리 과제에서 대형 언어 모델을 통해 다양한 언어처리 작업에 대한 연구가 활발히 이루어지고 있다. 특히 동형이의어를 구분하는 작업은 문장의 문법성을 정확히 판단하고 비교해야 되기 때문에 어려운 작업이다. KE-T5는 큰 규모의 한국어를 통해 학습된 한국어 대형 언어 모델로 대부분의 자연어처리 과제에서 활용할 수 있으며 복잡한 언어처리 작업에서 높은 성능을 기대할 수 있다. 본 논문에서는 큰 규모의 한국어를 통해 학습된 KE-T5를 활용하여 동형이의어 구별 문제를 수행하고 평가한다.
Proceedings of the Korean Society of Computer Information Conference
/
2023.07a
/
pp.719-720
/
2023
본 연구에서는 온라인 저지 문항을 블록 프로그래밍 언어로 학습하기 위한 방안에 대해서 탐구하였다. 온라인 저지를 활용한 프로그래밍 교육은 알고리즘을 설계하는 추상화 과정과 이를 프로그래밍 언어로 작성하는 자동화 과정이 포함되며 이는 컴퓨팅 사고력 발달에 영향을 준다. 온라인 저지는 대부분 텍스트 프로그래밍 언어(이하, TPL)에서 지원되어 초보 학습자가 사용하기에 어려움이 있다. 블록 프로그래밍 언어(이하, BPL)를 기반으로 한 온라인 저지는 BPL로 작성한 것을 TPL로 변환하는 방법과 그래픽 기반 문제상황을 해결하는 방법이 있으며 TPL로 변환하는 것은 텍스트 기반 온라인 저지 문항을 사용할 수 있으나 사용하는 방법이 어렵다. 반면 그래픽 기반 문제 상황은 사용하는 방법이 쉽지만 문항이 제한적이고 순차적 사고가 강조된다. 이에 엔트리 '스터디'와 '나의 학급-과제'를 이용하면 자동 평가 기능은 없지만 학습자가 익숙한 환경에서 학습할 수 있고 교사는 문항을 직접 개발할 수 있으며 문제 제시, 예시 작품 제시, 블록 제한, 과제제출 등을 사용하여 BPL에서 온라인 저지 문항을 학습할 수 있다.
Annual Conference on Human and Language Technology
/
2023.10a
/
pp.312-318
/
2023
본 연구는 다양한 대규모 언어 모델들의 한국어/영어 공감 대화 생성에서 성능을 실험적으로 비교 분석하는 것과 개인의 성향과 공감 사이에서의 상관 관계를 실험적으로 분석하는 것을 목표로 한다. 이를 위해, 한국어 공감 대화 데이터셋인 KorEmpatheticDialogues 를 구축하였고, personality-aware prompting 방법을 제안한다. 실험을 통해, 총 18개의 언어 모델들 간의 공감 대화 생성 성능을 비교 분석하였고, 개인의 성향에 맞춤형 제공하는 공감이 더 상호작용을 이끌어낼 수 있다는 점을 보여준다. 코드와 데이터셋은 게재가 허용되면 공개할 예정이다.
Suhyune Son;Chanjun Park ;Jungseob Lee;Midan Shim;Sunghyun Lee;JinWoo Lee ;Aram So;Heuiseok Lim
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.295-299
/
2022
자원이 부족한 언어 환경에서 사전학습 언어모델 학습을 위한 대용량의 코퍼스를 구축하는데는 한계가 존재한다. 본 논문은 이러한 한계를 극복할 수 있는 Cross-lingual Post-Training (XPT) 방법론을 적용하여 비교적 자원이 부족한 한국어에서 해당 방법론의 효율성을 분석한다. 적은 양의 한국어 코퍼스인 400K와 4M만을 사용하여 다양한 한국어 사전학습 모델 (KLUE-BERT, KLUE-RoBERTa, Albert-kor)과 mBERT와 전반적인 성능 비교 및 분석 연구를 진행한다. 한국어의 대표적인 벤치마크 데이터셋인 KLUE 벤치마크를 사용하여 한국어 하위태스크에 대한 성능평가를 진행하며, 총 7가지의 태스크 중에서 5가지의 태스크에서 XPT-4M 모델이 기존 한국어 언어모델과의 비교에서 가장 우수한 혹은 두번째로 우수한 성능을 보인다. 이를 통해 XPT가 훨씬 더 많은 데이터로 훈련된 한국어 언어모델과 유사한 성능을 보일 뿐 아니라 학습과정이 매우 효율적임을 보인다.
Journal of The Korean Association of Information Education
/
v.24
no.1
/
pp.117-129
/
2020
The purpose of this paper is to explore ways to assess computational thinking from a formative perspective and to design a process for assessing programming learning using Python. Therefore, this study explored the computational thinking domain and analyzed research related to assessment design. Also, this study identified the areas of Python programming learning that beginners learn and the areas of computational thinking ability that can be obtained through Python learning. Through this, we designed an assessment method that provides feedback by analyzing syntax corresponding to computational thinking ability. Besides, self-assessment is possible through reflective thinking by using the flow-chart and pseudo-code to express ideas, and peer feedback is designed through code sharing and communication using community.
Annual Conference on Human and Language Technology
/
2009.10a
/
pp.61-66
/
2009
본 논문은 다양한 형태의 웹 문서에 적용하기 위해서, 언어의 통계정보 및 후처리 규칙에 기반 하여 개선된 문장경계 인식 기술을 제안한다. 제안한 방법은 구두점 생략 및 띄어쓰기 오류가 빈번한 웹 문서에 적용하기 위해서 문장경계로 사용될 수 있는 모든 음절을 대상으로 학습하여 문장경계 인식을 수행하였고, 문장경계인식 성능을 최대화 하기 위해서 다양한 실험을 통해 최적의 자질 및 학습데이터를 선정하였고, 다양한 기계학습 기반 분류 모델을 비교하여 최적의 분류모델을 선택하였으며, 학습데이터에 의존적인 통계모델의 오류를 규칙에 기반 해서 보정하였다. 성능 실험은 다양한 형태의 문서별 성능 측정을 위해서 문어체와 구어체가 복합적으로 사용된 신문기사와 블로그 문서(평가셋1), 문어체 위주로 구성된 세종말뭉치와 백과사전 본문(평가셋2), 구두점 생략 및 띄어쓰기 오류가 빈번한 웹 사이트의 게시판 글(평가셋3)을 대상으로 성능 측정을 하였다. 성능척도로는 F-measure를 사용하였으며, 구두점만을 대상으로 문장경계 인식 성능을 평가한 결과, 평가셋1에서는 96.5%, 평가셋2에서는 99.4%를 보였는데, 구어체의 문장경계인식이 더 어려움을 알 수 있었다. 평가셋1의 경우에도 규칙으로 후처리한 경우 정확률이 92.1%에서 99.4%로 올라갔으며, 이를 통해 후처리 규칙의 필요성을 알 수 있었다. 최종 성능평가로는 구두점만을 대상으로 학습된 기본 엔진과 모든 문장경계후보를 인식하도록 개선된 엔진을 평가셋3을 사용하여 비교 평가하였고, 기본 엔진(61.1%)에 비해서 개선된 엔진이 32.0% 성능 향상이 있음을 확인함으로써 제안한 방법이 웹 문서에 효과적임을 입증하였다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.541-545
/
2018
본 논문에서는 Sent2Vec을 이용한 문장 임베딩으로 구현한 유사 문장 판별 시스템을 제안한다. 또한 한국어 특성에 맞게 모델을 개선하여 성능을 향상시키는 방법을 소개한다. 고성능 라이브러리 구현과 제품화 가능한 수준의 완성도 높은 구현을 보였으며, 자체 구축한 평가셋으로 한국어 특성을 반영한 모델에 대한 P@1 평가 결과 Word2Vec CBOW에 비해 9.25%, Sent2Vec에 비해 1.93% 더 높은 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.