• Title/Summary/Keyword: 언어평가

Search Result 1,675, Processing Time 0.026 seconds

PrefixLM for Korean text summarization (PrefixLM에 기반한 한국어 텍스트 요약)

  • Lee, Kun-Hui;Na, Seung-Hoon;Lim, Joon-Ho;Kim, Tae-Hyeong;Choi, Yun-Su;Chang, Du-Seong
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.22-27
    • /
    • 2021
  • 언어 모델은 많은 데이터와 많은 파라미터로 오래 사전학습을 수행할수록 그 성능이 높아지지만, 그 크기가 큰 만큼 거대 언어 모델은 너무 큰 크기로 인해서 실사용에 많은 하드웨어 리소스를 필요로 한다. 본 논문에서는 거대 언어 모델 중 하나인 T5의 인코더-디코더 구조 대비 절반의 크기를 가지는 PrefixLM 구조에 기반한 한국어 모델을 학습하여 자연어 처리에서 중요한 태스크 중 하나인 텍스트 생성 요약 태스크에서의 성능평가를 하여 BART, T5와 비교하여 각각 0.02, 0.0859의 성능 향상을 보였다.

  • PDF

A Study on Methodology on Building NLI Benchmark Dataset in korean (한국어 추론 벤치마크 데이터 구축을 위한 방법론 연구)

  • Han, Jiyoon;Kim, Hansaem
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.292-297
    • /
    • 2020
  • 자연어 추론 모델은 전제와 가설 사이의 의미 관계를 함의와 모순, 중립 세 가지로 판별한다. 영어에서는 RTE(recognizing textual entailment) 데이터셋과 다양한 NLI(Natural Language Inference) 데이터셋이 이러한 모델을 개발하고 평가하기 위한 벤치마크로 공개되어 있다. 본 연구는 국외의 텍스트 추론 데이터 주석 가이드라인 및 함의 데이터를 언어학적으로 분석한 결과와 함의 및 모순 관계에 대한 의미론적 연구의 토대 위에서 한국어 자연어 추론 벤치마크 데이터 구축 방법론을 탐구한다. 함의 및 모순 관계를 주석하기 위하여 각각의 의미 관계와 관련된 언어 현상을 정의하고 가설을 생성하는 방안에 대하여 제시하며 이를 바탕으로 실제 구축될 데이터의 형식과 주석 프로세스에 대해서도 논의한다.

  • PDF

Text Classification using Cloze Question based on KorBERT (KorBERT 기반 빈칸채우기 문제를 이용한 텍스트 분류)

  • Heo, Jeong;Lee, Hyung-Jik;Lim, Joon-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.486-489
    • /
    • 2021
  • 본 논문에서는 KorBERT 한국어 언어모델에 기반하여 텍스트 분류문제를 빈칸채우기 문제로 변환하고 빈칸에 적합한 어휘를 예측하는 방식의 프롬프트기반 분류모델에 대해서 소개한다. [CLS] 토큰을 이용한 헤드기반 분류와 프롬프트기반 분류는 사전학습의 NSP모델과 MLM모델의 특성을 반영한 것으로, 텍스트의 의미/구조적 분석과 의미적 추론으로 구분되는 텍스트 분류 태스크에서의 성능을 비교 평가하였다. 의미/구조적 분석 실험을 위해 KLUE의 의미유사도와 토픽분류 데이터셋을 이용하였고, 의미적 추론 실험을 위해서 KLUE의 자연어추론 데이터셋을 이용하였다. 실험을 통해, MLM모델의 특성을 반영한 프롬프트기반 텍스트 분류에서는 의미유사도와 토픽분류 태스크에서 우수한 성능을 보였고, NSP모델의 특성을 반영한 헤드기반 텍스트 분류에서는 자연어추론 태스크에서 우수한 성능을 보였다.

  • PDF

Homonym Identification Using Korean Pre-trained Model KE-T5 (한국어 사전학습 모델 KE-T5 기반 동형이의어 구별)

  • Moon, Seona;Seo, Hyeon-Tae;Shin, Saim;Kim, San
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.507-508
    • /
    • 2021
  • 최근 한국어 자연어처리 과제에서 대형 언어 모델을 통해 다양한 언어처리 작업에 대한 연구가 활발히 이루어지고 있다. 특히 동형이의어를 구분하는 작업은 문장의 문법성을 정확히 판단하고 비교해야 되기 때문에 어려운 작업이다. KE-T5는 큰 규모의 한국어를 통해 학습된 한국어 대형 언어 모델로 대부분의 자연어처리 과제에서 활용할 수 있으며 복잡한 언어처리 작업에서 높은 성능을 기대할 수 있다. 본 논문에서는 큰 규모의 한국어를 통해 학습된 KE-T5를 활용하여 동형이의어 구별 문제를 수행하고 평가한다.

  • PDF

Exploring Ways to Learn Online Judge Problems in Block Programming Language (온라인 저지 문항을 블록 프로그래밍 언어로 학습하기 위한 방안 탐구)

  • HakNeung Go;Youngjun Lee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.719-720
    • /
    • 2023
  • 본 연구에서는 온라인 저지 문항을 블록 프로그래밍 언어로 학습하기 위한 방안에 대해서 탐구하였다. 온라인 저지를 활용한 프로그래밍 교육은 알고리즘을 설계하는 추상화 과정과 이를 프로그래밍 언어로 작성하는 자동화 과정이 포함되며 이는 컴퓨팅 사고력 발달에 영향을 준다. 온라인 저지는 대부분 텍스트 프로그래밍 언어(이하, TPL)에서 지원되어 초보 학습자가 사용하기에 어려움이 있다. 블록 프로그래밍 언어(이하, BPL)를 기반으로 한 온라인 저지는 BPL로 작성한 것을 TPL로 변환하는 방법과 그래픽 기반 문제상황을 해결하는 방법이 있으며 TPL로 변환하는 것은 텍스트 기반 온라인 저지 문항을 사용할 수 있으나 사용하는 방법이 어렵다. 반면 그래픽 기반 문제 상황은 사용하는 방법이 쉽지만 문항이 제한적이고 순차적 사고가 강조된다. 이에 엔트리 '스터디'와 '나의 학급-과제'를 이용하면 자동 평가 기능은 없지만 학습자가 익숙한 환경에서 학습할 수 있고 교사는 문항을 직접 개발할 수 있으며 문제 제시, 예시 작품 제시, 블록 제한, 과제제출 등을 사용하여 BPL에서 온라인 저지 문항을 학습할 수 있다.

  • PDF

Language Model Evaluation Based on Korean-English Empathetic Dialogue Datasets and Personality (한국어-영어 공감대화 데이터셋과 성격을 기반으로 한 언어모델 평가)

  • Young-Jun Lee;JongHwan Hyeon;DoKyong Lee;Joo-Won Sung;Ho-Jin Choi
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.312-318
    • /
    • 2023
  • 본 연구는 다양한 대규모 언어 모델들의 한국어/영어 공감 대화 생성에서 성능을 실험적으로 비교 분석하는 것과 개인의 성향과 공감 사이에서의 상관 관계를 실험적으로 분석하는 것을 목표로 한다. 이를 위해, 한국어 공감 대화 데이터셋인 KorEmpatheticDialogues 를 구축하였고, personality-aware prompting 방법을 제안한다. 실험을 통해, 총 18개의 언어 모델들 간의 공감 대화 생성 성능을 비교 분석하였고, 개인의 성향에 맞춤형 제공하는 공감이 더 상호작용을 이끌어낼 수 있다는 점을 보여준다. 코드와 데이터셋은 게재가 허용되면 공개할 예정이다.

  • PDF

Korean language model construction and comparative analysis with Cross-lingual Post-Training (XPT) (Cross-lingual Post-Training (XPT)을 통한 한국어 언어모델 구축 및 비교 실험)

  • Suhyune Son;Chanjun Park ;Jungseob Lee;Midan Shim;Sunghyun Lee;JinWoo Lee ;Aram So;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.295-299
    • /
    • 2022
  • 자원이 부족한 언어 환경에서 사전학습 언어모델 학습을 위한 대용량의 코퍼스를 구축하는데는 한계가 존재한다. 본 논문은 이러한 한계를 극복할 수 있는 Cross-lingual Post-Training (XPT) 방법론을 적용하여 비교적 자원이 부족한 한국어에서 해당 방법론의 효율성을 분석한다. 적은 양의 한국어 코퍼스인 400K와 4M만을 사용하여 다양한 한국어 사전학습 모델 (KLUE-BERT, KLUE-RoBERTa, Albert-kor)과 mBERT와 전반적인 성능 비교 및 분석 연구를 진행한다. 한국어의 대표적인 벤치마크 데이터셋인 KLUE 벤치마크를 사용하여 한국어 하위태스크에 대한 성능평가를 진행하며, 총 7가지의 태스크 중에서 5가지의 태스크에서 XPT-4M 모델이 기존 한국어 언어모델과의 비교에서 가장 우수한 혹은 두번째로 우수한 성능을 보인다. 이를 통해 XPT가 훨씬 더 많은 데이터로 훈련된 한국어 언어모델과 유사한 성능을 보일 뿐 아니라 학습과정이 매우 효율적임을 보인다.

  • PDF

Assessment Process Design for Python Programming Learning (파이선(Python) 학습을 위한 평가 프로세스 설계)

  • Ko, Eunji;Lee, Jeongmin
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.1
    • /
    • pp.117-129
    • /
    • 2020
  • The purpose of this paper is to explore ways to assess computational thinking from a formative perspective and to design a process for assessing programming learning using Python. Therefore, this study explored the computational thinking domain and analyzed research related to assessment design. Also, this study identified the areas of Python programming learning that beginners learn and the areas of computational thinking ability that can be obtained through Python learning. Through this, we designed an assessment method that provides feedback by analyzing syntax corresponding to computational thinking ability. Besides, self-assessment is possible through reflective thinking by using the flow-chart and pseudo-code to express ideas, and peer feedback is designed through code sharing and communication using community.

Advanced detection of sentence boundaries based on hybrid method (하이브리드 방법을 이용한 개선된 문장경계인식)

  • Lee, Chung-Hee;Jang, Myung-Gil;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.61-66
    • /
    • 2009
  • 본 논문은 다양한 형태의 웹 문서에 적용하기 위해서, 언어의 통계정보 및 후처리 규칙에 기반 하여 개선된 문장경계 인식 기술을 제안한다. 제안한 방법은 구두점 생략 및 띄어쓰기 오류가 빈번한 웹 문서에 적용하기 위해서 문장경계로 사용될 수 있는 모든 음절을 대상으로 학습하여 문장경계 인식을 수행하였고, 문장경계인식 성능을 최대화 하기 위해서 다양한 실험을 통해 최적의 자질 및 학습데이터를 선정하였고, 다양한 기계학습 기반 분류 모델을 비교하여 최적의 분류모델을 선택하였으며, 학습데이터에 의존적인 통계모델의 오류를 규칙에 기반 해서 보정하였다. 성능 실험은 다양한 형태의 문서별 성능 측정을 위해서 문어체와 구어체가 복합적으로 사용된 신문기사와 블로그 문서(평가셋1), 문어체 위주로 구성된 세종말뭉치와 백과사전 본문(평가셋2), 구두점 생략 및 띄어쓰기 오류가 빈번한 웹 사이트의 게시판 글(평가셋3)을 대상으로 성능 측정을 하였다. 성능척도로는 F-measure를 사용하였으며, 구두점만을 대상으로 문장경계 인식 성능을 평가한 결과, 평가셋1에서는 96.5%, 평가셋2에서는 99.4%를 보였는데, 구어체의 문장경계인식이 더 어려움을 알 수 있었다. 평가셋1의 경우에도 규칙으로 후처리한 경우 정확률이 92.1%에서 99.4%로 올라갔으며, 이를 통해 후처리 규칙의 필요성을 알 수 있었다. 최종 성능평가로는 구두점만을 대상으로 학습된 기본 엔진과 모든 문장경계후보를 인식하도록 개선된 엔진을 평가셋3을 사용하여 비교 평가하였고, 기본 엔진(61.1%)에 비해서 개선된 엔진이 32.0% 성능 향상이 있음을 확인함으로써 제안한 방법이 웹 문서에 효과적임을 입증하였다.

  • PDF

Implementation of Korean Sentence Similarity using Sent2Vec Sentence Embedding (Sent2Vec 문장 임베딩을 통한 한국어 유사 문장 판별 구현)

  • Park, Sang-Kil;Shin, MyeongCheol
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.541-545
    • /
    • 2018
  • 본 논문에서는 Sent2Vec을 이용한 문장 임베딩으로 구현한 유사 문장 판별 시스템을 제안한다. 또한 한국어 특성에 맞게 모델을 개선하여 성능을 향상시키는 방법을 소개한다. 고성능 라이브러리 구현과 제품화 가능한 수준의 완성도 높은 구현을 보였으며, 자체 구축한 평가셋으로 한국어 특성을 반영한 모델에 대한 P@1 평가 결과 Word2Vec CBOW에 비해 9.25%, Sent2Vec에 비해 1.93% 더 높은 성능을 보였다.

  • PDF