• 제목/요약/키워드: 언어평가

검색결과 1,675건 처리시간 0.025초

한국어 학습자 작문 자동 평가를 위한 평가 항목 선정 (Evaluation Category Selection For Automated Essay Evaluation of Korean Learner)

  • 곽용진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.270-271
    • /
    • 2017
  • 본 연구는 한국어 학습자 작문의 자동 평가 시스템 개발의 일환으로, 자동 평가 결과에 대한 설명과 근거가 될 수 있는 평기 기준 범주를 선정하기 위한 데이터 구축과 선정 방법을 제시한다. 작문의 평가 기준의 영역과 항목은 평가체계에 대한 이론적 연구에 따라 다양하다. 이러한 평가 기준은 자동 평가에서는 식별되기 어려운 경우도 있고, 각각의 평가 기준이 적용되는 작문 오류의 범위도 다양하다. 그러므로 본 연구에서는 자동 평가 기준 선정의 문제는 다양한 평가 기준에 중 하나를 선정하는 분류의 문제로 보고, 학습데이터를 구축, 기계학습을 통해 자동 작문 평가에 효과적인 평가 기준을 선정 가능성을 제시한다.

  • PDF

의사소통기술을 활용한 해부설명회 적용 후 의학전문대학원생의 자기평가요인과 학업성취도 상관관계 분석 (Introduction of Explanation Meeting in Cadaveric Dissection Using Communication Skill : Correlation between Self-Evaluation Factor and Academic Achievement of Medical Students)

  • 김광환;김지희;박정현
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2010년도 추계학술발표논문집 2부
    • /
    • pp.897-900
    • /
    • 2010
  • 본 연구에서는 해부학 실습 교육과정에 해부설명회를 도입에 따른 의학전문대학원생들의 자기평가요인(만족도, 전공 연계성, 운영 적절성, 의사소통)과 학업성취도와의 상관관계를 분석하였다. 2008-2009학년도 1학기 해부학 실습 교육을 받은 의학전문대학원생들(n=102)이 일부 수업시간을 활용하여 해부설명회에 참가하였고, 보건 의료 계통의 학부생들에게 사체를 활용하여 인체 구조에 대한 설명과 토론을 마친 후 설문지와 소감문을 작성하게 하였다. 이를 바탕으로 자기 평가 요인들을 분석하였고, 2008-2009 학년도 해부학 성적과의 상관관계를 조사하였다. 설문 대상자의 일반적 특성에 따른 자기 평가 요인을 분석한 결과, 성별, 연령, 과거 경험 유무 등의 일반적 특성과 상관없이 만족도, 전공 연계성, 운영 적절성, 언어적 및 비언어적 커뮤니케이션 모두에서 높은 수치를 나타내었다. 자기 평가 요인 중 학업성취도와 높은 상관관계를 갖는 요인은 언어적 커뮤니케이션이었다(p<0.05). 또한 언어적 커뮤니케이션은 비언어적 커뮤니케이션과도 높은 상관관계를 가졌다(r=0.580, p<0.01). 결론적으로 커뮤니케이션 기법을 활용한 해부설명회의 도입은 의전원 학생들에게 심화 학습의 기회를 제공하였고 학습동기를 유발시키며, 적극적인 학습태도를 갖게 하였다. 아울러 커뮤니케이션에 대한 중요성을 깨닫게 되었고, 타 전공자와의 상호교류를 통한 학문적 이해의 폭이 확대되었음을 확인하였다. 본 연구 결과를 바탕으로 진행과정에 나타난 문제점을 보완하고 개선한다면 해부학 실습의 개선 방안으로서 해부설명회의 활용가치가 충분하다고 판단되었다.

  • PDF

한국어 언어모델의 속성 및 정량적 편향 분석: 영어 언어모델과의 비교 및 개선 제안 (Properties and Quantitative Analysis of Bias in Korean Language Models: A Comparison with English Language Models and Improvement Suggestions)

  • 김재민;채동규
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.558-562
    • /
    • 2023
  • 최근 ChatGPT의 등장으로 텍스트 생성 모델에 대한 관심이 높아지면서, 텍스트 생성 태스크의 성능평가를 위한 지표에 대한 연구가 활발히 이뤄지고 있다. 전통적인 단어 빈도수 기반의 성능 지표는 의미적인 유사도를 고려하지 못하기 때문에, 사전학습 언어모델을 활용한 지표인 BERTScore를 주로 활용해왔다. 하지만 이러한 방법은 사전학습 언어모델이 학습한 데이터에 존재하는 편향으로 인해 공정성에 대한 문제가 우려된다. 이에 따라 한국어 사전학습 언어모델의 편향에 대한 분석 연구가 필요한데, 기존의 한국어 사전학습 언어모델의 편향 분석 연구들은 사회에서 생성되는 다양한 속성 별 편향을 고려하지 못했다는 한계가 있다. 또한 서로 다른 언어를 기반으로 하는 사전학습 언어모델들의 속성 별 편향을 비교 분석하는 연구 또한 미비하였다. 이에 따라 본 논문에서는 한국어 사전학습 언어모델의 속성 별 편향을 비교 분석하며, 영어 사전학습 언어모델이 갖고 있는 속성 별 편향과 비교 분석하였고, 비교 가능한 데이터셋을 구축하였다. 더불어 한국어 사전학습 언어모델의 종류 및 크기 별 편향 분석을 통해 적합한 모델을 선택할 수 있도록 가이드를 제시한다.

  • PDF

연속음성인식 시스템의 성능 향상을 위한 반복학습법을 이용한 언어모델 (Language Models Using Iterative Learning Method for the Improvement of Performance of CSR System)

  • 오세진;황철준;김범국;정호열;정현열
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 1호
    • /
    • pp.82-85
    • /
    • 1999
  • 본 연구에서는 연속음성인식 시스템의 성능 향상을 위하여 음성의 채록환경 및 데이터량 등을 고려한 효과적인 언어모델 작성방법을 제안하고, 이를 항공편 예약시스템에 적용하여 성능 평가 실험을 실시한 결과 $91.6\%$의 인식률을 얻어 제안한 방법의 유효성을 확인하였다. 이를 위하여 소량의 200문장의 항공편 예약 텍스트 데이터를 이용하여 좀더 강건한 단어발생 확률을 가지도록 하기 위해 일반적으로 대어휘 연속음성인식에서 많이 이용되고 있는 단어 N-gram 언어모델을 도입하고 이를 다양한 발성환경을 고려하여 1,154문장으로 확장한 후 동일 문장'을 반복 학습하여 언어모델을 작성하였다. 인식에 있어서는 오인식과 문법적 오류를 최소화하기 위하여 forward - backward pass 방법의 stack decoding알고리즘을 이용하였다. 인식실험 결과, 평가용 3인의 200문장을 각 반복학습 회수에 따라 학습한 각 언어모델에 대해 평가한 결과, forward pass의 경우 평균 $84.1\%$, backward pass의 경우 평균 $91.6\%$의 문장 인식률을 얻었다. 또한, 반복학습 회수가 증가함에 따라 backward pass의 인시률의 변화는 없었으나, forward pass의 경우, 인식률이 반복회수에 따라 증가하다가 일정값에 수렴함을 알 수 있었고, 언어모델의 복잡도에서도 반복회수가 증가함에 따라 서서히 줄어들며 수렴함을 알 수 있었다. 이상의 결과로부터 소량의 텍스트 데이터를 이용한 제한된 태스크에서 언어모델을 작성할 때 반복학습 방법이 유효함을 확인할 수 있다.

  • PDF

SRLev-BIH: 한국어 일반 상식 추론 및 생성 능력 평가 지표 (SRLev-BIH: An Evaluation Metric for Korean Generative Commonsense Reasoning)

  • 서재형;장윤나;이재욱;문현석;어수경;박찬준;소아람;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.176-181
    • /
    • 2022
  • 일반 상식 추론 능력은 가장 사람다운 능력 중 하나로써, 인공지능 모델이 쉽게 모사하기 어려운 영역이다. 딥러닝 기반의 언어 모델은 여전히 일반 상식에 기반한 추론을 필요로 하는 분야에서 부족한 성능을 보인다. 특히, 한국어에서는 일반 상식 추론과 관련한 연구가 상당히 부족한 상황이다. 이러한 문제 완화를 위해 최근 생성 기반의 일반 상식 추론을 위한 한국어 데이터셋인 Korean CommonGen [1]이 발표되었다. 그러나, 해당 데이터셋의 평가 지표는 어휘 단계의 유사성과 중첩에 의존하는 한계를 지니며, 생성한 문장이 일반 상식에 부합한 문장인지 측정하기 어렵다. 따라서 본 논문은 한국어 일반 상식 추론 및 생성 능력에 대한 평가 지표를 개선하기 위해 문장 성분의 의미역과 자모의 형태 변화를 바탕으로 생성 결과를 평가하는 SRLev, 사람의 평가 결과를 학습한 BIH, 그리고 두 평가 지표의 장점을 결합한 SRLev-BIH를 제안한다.

  • PDF

유아의 사회적언어 사용과 거친 신체놀이의 관계 (The relationships of rough & tumble play and children's social language use)

  • 강영식;마지순
    • 한국산학기술학회논문지
    • /
    • 제14권12호
    • /
    • pp.6125-6132
    • /
    • 2013
  • 본 연구목적은 사회적언어 사용과 거친 신체놀이의 관계를 알아봄으로써 사회적언어를 활용하여 거친 신체놀이를 증진시킬 수 있는 프로그램 개발을 위한 기초자료를 제공하는 것이다. 연구문제는 첫째, 유아의 사회적언어 사용과 거친 신체놀이는 어떠한 관계가 있는가? 둘째, 유아의 사회적언어 사용은 거친 신체놀이에 어떠한 영향을 미치는가? 연구대상은 충남 N시의 유아 90명이며 평균 78개월이었다. 연구결과는 첫째, 거친 신체놀이 전체는 사회적언어의 하위영역인 제안, 평가, 주의집중, 차례지정, 경고, 명령과 정적상관이 나타났다. 다만 달리기와 거부는 부적상관이 나타났다. 둘째, 유아의 거친 신체놀이 중 유아의 도망가기 놀이에는 경고, 명령의 사회적언어, 놀리기는 평가, 명령의 사회적언어, 밀고 당기기의 놀이는 명령, 승낙, 추정의 사회적언어가 정적영향력이 있었으며 행위요구는 부적영향이 나타났다. 치기 찌르기의 놀이는 개인적 요망, 주장과 정적영향, 넘어지기는 제안, 명령이 정적영향이 있었으며 거부는 부적영향이 나타났다. 잡기는 제안, 주의집중이 정적영향이 나타났으며 행위요구는 부적영향이 나타났다. 달려들기는 경고가 정적 영향력이 있었으나 거부는 부적영향이 나타났다. 몰래다가가 놀래키기는 예절표시가 정적 영향을 미치는 것으로 나타났다. 유아들이 사회적 관계를 형성할 수 있는 거친 신체놀이를 위해서는 사회적언어 사용 전략을 활용한 프로그램이 개발 되어야 할 것이다.

한국어 문장 임베딩의 언어적 속성 입증 평가 (A Probing Task on Linguistic Properties of Korean Sentence Embedding)

  • 안애림;고병일;이다니엘;한경은;신명철;남지순
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.161-166
    • /
    • 2021
  • 본 연구는 한국어 문장 임베딩(embedding)에 담겨진 언어적 속성을 평가하기 위한 프로빙 태스크(Probing Task)를 소개한다. 프로빙 태스크는 임베딩으로부터 문장의 표층적, 통사적, 의미적 속성을 구분하는 문제로 영어, 폴란드어, 러시아어 문장에 적용된 프로빙 테스크를 소개하고, 이를 기반으로하여 한국어 문장의 속성을 잘 보여주는 한국어 문장 임베딩 프로빙 태스크를 설계하였다. 언어 공통적으로 적용 가능한 6개의 프로빙 태스크와 한국어 문장의 주요 특징인 주어 생략(SubjOmission), 부정법(Negation), 경어법(Honorifics)을 추가로 고안하여 총 9개의 프로빙 태스크를 구성하였다. 각 태스크를 위한 데이터셋은 '세종 구문분석 말뭉치'를 의존구문문법(Universal Dependency Grammar) 구조로 변환한 후 자동으로 구축하였다. HuggingFace에 공개된 4개의 다국어(multilingual) 문장 인코더와 4개의 한국어 문장 인코더로부터 획득한 임베딩의 언어적 속성을 프로빙 태스크를 통해 비교 분석한 결과, 다국어 문장 인코더인 mBART가 9개의 프로빙 태스크에서 전반적으로 높은 성능을 보였다. 또한 한국어 문장 임베딩에는 표층적, 통사적 속성보다는 심층적인 의미적 속성을 더욱 잘 담고 있음을 확인할 수 있었다.

  • PDF

KorSciDeBERTa: 한국어 과학기술 분야를 위한 DeBERTa 기반 사전학습 언어모델 (KorSciDeBERTa: A Pre-trained Language Model Based on DeBERTa for Korean Science and Technology Domains)

  • 김성찬;김경민;김은희;이민호;이승우;최명석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2023년도 제35회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.704-706
    • /
    • 2023
  • 이 논문에서는 과학기술분야 특화 한국어 사전학습 언어모델인 KorSciDeBERTa를 소개한다. DeBERTa Base 모델을 기반으로 약 146GB의 한국어 논문, 특허 및 보고서 등을 학습하였으며 모델의 총 파라미터의 수는 180M이다. 논문의 연구분야 분류 태스크로 성능을 평가하여 사전학습모델의 유용성을 평가하였다. 구축된 사전학습 언어모델은 한국어 과학기술 분야의 여러 자연어처리 태스크의 성능향상에 활용될 것으로 기대된다.

  • PDF

언어 지식과 통계 정보의 보완적 특성을 이용한 품사 태깅 (Part-of-Speech Tagging Using Complemental Characteristics of Linguistic Knowledge and Stochastic Information)

  • 임희석;김진동;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1997년도 제9회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.102-108
    • /
    • 1997
  • 기존의 품사 태깅 방법에서 독립적으로 사용해온 언어 지식과 통계 정보는 품사 태깅의 정확도와 처리 범위의 향상을 위해서 상호 보완적인 특성을 갖는다. 이에 본 논문은 언어 지식과 통계 정보의 보완적 특성을 이용한 규칙 우선 직렬 품사 태깅 방법을 제안한다. 제안된 방법은 언어 지식에 의한 품사 태깅 결과를 선호함으로써 규칙 기반 품사 태깅의 정확도를 유지하며, 언어 지식에 의해서 모호성이 해소되지 않은 어절에 통계 정보에 의한 품사 태깅 결과를 할당함으로써 통계 기반 품사 태깅의 처리 범위를 유지한다. 또한, 수정 언어 지식에 의해 태깅 결과의 오류를 보정함으로써 품사 태깅의 정확도를 향상시킨다. 약 2만 어절 크기의 외부 평가 코퍼스에 대해 수행된 실험 결과, 규칙 우선 직렬 품사 태깅 시스템은 통계 정보만을 이용한 품사 태깅의 정확도보다 32.70% 향상된 95.43%의 정확도를 보였다.

  • PDF