• Title/Summary/Keyword: 언론 빅데이터

Search Result 93, Processing Time 0.02 seconds

Analysis entrepreneurship trends using keyword analysis of news article Big Data :2013~2022 (뉴스기사 빅데이터의 키워드분석을 활용한 창업 트렌드 분석:2013~2022 )

  • Jaeeog Kim;Byunghoon Jeon
    • Journal of Platform Technology
    • /
    • v.11 no.3
    • /
    • pp.83-97
    • /
    • 2023
  • This research aims to identify startup trends by analyzing a large number of news articles through semantic network analysis. Using the BIGKinds article analysis service provided by the Korea Press Foundation, 330,628 news articles from 19 newspapers from January 2013 to December 2022 were comprehensively analyzed. The study focused on exploring the changes in key issues over the past decade, considering the impact of the social environment and global economic trends on entrepreneurship. We compared the number of news articles and changes in issues before and after the COVID-19 pandemic, and visualized entrepreneurship trends through frequency analysis, relationship analysis, and correlation analysis. The results of the study showed that the top keywords for entrepreneurship-related words are startup activation and commercialization, and the correlation between COVID-19 and entrepreneurship keywords is almost negligible in a linear sense, but the number of news articles decreased during the pandemic, which has an impact. In particular, the most frequently mentioned keywords are Ministry of SMEs and Startups, place is the United States, and person is limited. The agency was the SBA, and the entrepreneurship sector is more affected by social issues than any other sector, with the important characteristics of increased frequency of prompt access. This study supplies essential basic data for understanding and exploring issues and events related to entrepreneurship and suggests future research topics in the field.

  • PDF

A Study on Risk Issues and Policy for Future Society of Digital Transformation: Focusing on Artificial Intelligence (디지털 전환의 미래사회 위험이슈 및 정책적 대응 방향: 인공지능을 중심으로)

  • Koo, Bonjin
    • Journal of Technology Innovation
    • /
    • v.30 no.1
    • /
    • pp.1-20
    • /
    • 2022
  • Digital transformation refers to the economic and social effects of digitisation and digitalisation. Although digital transformation acts as a useful tool for economic/social development and enhancing the convenience of life, it can have negative effects (misuse of personal information, ethical problems, deepening social gaps, etc.). The government is actively establishing policies to promote digital transformation to secure competitiveness and technological hegemony, however, understanding of digital transformation-related risk issues and implementing policies to prevent them are relatively slow. Thus, this study systematically identifies risk issues of the future society that can be caused by digital transformation based on quantitative analysis of media articles big data through the Embedded Topic Modeling method. Specifically, first, detailed issues of negative effects of digital transformation in major countries were identified. Then detailed issues of negative effects of artificial intelligence in major countries and Korea were identified. Further, by synthesizing the results, future direction of the government's digital transformation policies for responding the negative effects was proposed. The policy implications are as follows. First, since the negative effects of digital transformation does not only affect technological fields but also affect the overall society, such as national security, social issues, and fairness issues. Therefore, the government should not only promote the positive functions of digital transformation, but also prepare policies to counter the negative functions of digital transformation. Second, the detailed issues of future social risks of digital transformation appear differently depending on contexts, so the government should establish a policy to respond to the negative effects of digital transformation in consideration of the national and social context. Third, the government should set a major direction for responding negative effects of digital transformation to minimize confusion among stakeholders, and prepare effective policy measures.

Online news-based stock price forecasting considering homogeneity in the industrial sector (산업군 내 동질성을 고려한 온라인 뉴스 기반 주가예측)

  • Seong, Nohyoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.2
    • /
    • pp.1-19
    • /
    • 2018
  • Since stock movements forecasting is an important issue both academically and practically, studies related to stock price prediction have been actively conducted. The stock price forecasting research is classified into structured data and unstructured data, and it is divided into technical analysis, fundamental analysis and media effect analysis in detail. In the big data era, research on stock price prediction combining big data is actively underway. Based on a large number of data, stock prediction research mainly focuses on machine learning techniques. Especially, research methods that combine the effects of media are attracting attention recently, among which researches that analyze online news and utilize online news to forecast stock prices are becoming main. Previous studies predicting stock prices through online news are mostly sentiment analysis of news, making different corpus for each company, and making a dictionary that predicts stock prices by recording responses according to the past stock price. Therefore, existing studies have examined the impact of online news on individual companies. For example, stock movements of Samsung Electronics are predicted with only online news of Samsung Electronics. In addition, a method of considering influences among highly relevant companies has also been studied recently. For example, stock movements of Samsung Electronics are predicted with news of Samsung Electronics and a highly related company like LG Electronics.These previous studies examine the effects of news of industrial sector with homogeneity on the individual company. In the previous studies, homogeneous industries are classified according to the Global Industrial Classification Standard. In other words, the existing studies were analyzed under the assumption that industries divided into Global Industrial Classification Standard have homogeneity. However, existing studies have limitations in that they do not take into account influential companies with high relevance or reflect the existence of heterogeneity within the same Global Industrial Classification Standard sectors. As a result of our examining the various sectors, it can be seen that there are sectors that show the industrial sectors are not a homogeneous group. To overcome these limitations of existing studies that do not reflect heterogeneity, our study suggests a methodology that reflects the heterogeneous effects of the industrial sector that affect the stock price by applying k-means clustering. Multiple Kernel Learning is mainly used to integrate data with various characteristics. Multiple Kernel Learning has several kernels, each of which receives and predicts different data. To incorporate effects of target firm and its relevant firms simultaneously, we used Multiple Kernel Learning. Each kernel was assigned to predict stock prices with variables of financial news of the industrial group divided by the target firm, K-means cluster analysis. In order to prove that the suggested methodology is appropriate, experiments were conducted through three years of online news and stock prices. The results of this study are as follows. (1) We confirmed that the information of the industrial sectors related to target company also contains meaningful information to predict stock movements of target company and confirmed that machine learning algorithm has better predictive power when considering the news of the relevant companies and target company's news together. (2) It is important to predict stock movements with varying number of clusters according to the level of homogeneity in the industrial sector. In other words, when stock prices are homogeneous in industrial sectors, it is important to use relational effect at the level of industry group without analyzing clusters or to use it in small number of clusters. When the stock price is heterogeneous in industry group, it is important to cluster them into groups. This study has a contribution that we testified firms classified as Global Industrial Classification Standard have heterogeneity and suggested it is necessary to define the relevance through machine learning and statistical analysis methodology rather than simply defining it in the Global Industrial Classification Standard. It has also contribution that we proved the efficiency of the prediction model reflecting heterogeneity.