• Title/Summary/Keyword: 어휘 부류

Search Result 20, Processing Time 0.037 seconds

Automatic Mapping of Korean Wordnet "KorLex" to Semantic Classes of Sejong Dictionary (세종 의미 부류와 KorLex 명사 어휘 의미망 자동 맵핑)

  • So, Gilja;Yoon, Aesun;Kwon, Hyuk-Chul
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.92-96
    • /
    • 2009
  • 인간이 가진 개념을 지식베이스화하려는 시도 중 하나로 의미망이 구축되고 있다. 한국어를 대상으로 한 어휘 의미망 중 프린스턴 대학의 WordNet을 대역한 KorLex는 1,2단계에서 한국어 어휘의미의 특성을 반영하여 개념 및 의미구조를 재구조화하고 있다. 그러나 현재 KorLex의 동의어 집합을 구성하는 어휘 의미에는 논항정보를 따로 구성할 수 없었다. 본 연구는 세종 전자 사전 격틀정보내의 선택제약조건(selectional restriction)으로 사용되고 있는 의미 부류와 KorLex의 명사 어휘 의미망을 자동 맵핑하는 방안을 제안함으로써 KorLex에서 세종 전자 사전 격틀정보를 활용할 수 있는 가능성을 제공한다.

  • PDF

Pronunciation of the Korean diphthong /jo/: Phonetic realizations and acoustic properties (한국어 /ㅛ/의 발음 양상 연구: 발음형 빈도와 음향적 특징을 중심으로)

  • Hyangwon Lee
    • Phonetics and Speech Sciences
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2023
  • The purpose of this study is to determine how the Korean diphthong /jo/ shows phonetic variation in various linguistic environments. The pronunciation of /jo/ is discussed, focusing on the relationship between phonetic variation and the distribution range of vowels. The location in a word (monosyllable, word-initial, word-medial, word-final) and word class (content word, function word) were analyzed using the speech of 10 female speakers of the Seoul Corpus. As a result of determining the frequency of appearance of /jo/ in each environment, the pronunciation type and word class were affected by the location in a word. Frequent phonetic reduction was observed in the function word /jo/ in the acoustic analysis. The word class did not change the average phonetic values of /jo/, but changed the distribution of individual tokens. These results indicate that the linguistic environment affects the phonetic distribution of vowels.

Semantic Clustering of Predicate using Word Definition in Dictionary (사전 뜻풀이를 이용한 용언 의미 군집화)

  • Bae, Young-Jun;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.46-51
    • /
    • 2010
  • 한국어의 어휘의미 정보를 명확히 파악하기 위해서는 어휘 의미 체계를 구축해야 한다. 본 논문에서는 어휘 의미 체계 구축의 단계 중 하나인 용언의 의미 군집화를 연구하였다. 주어 및 목적어의 논항 구조와 선택 제약정보, 부사의 결합정보를 이용한 이전의 연구와는 달리 의미태깅이 된 사전 뜻풀이의 용언정보를 이용하여 용언의 의미 군집화와 간단한 계층화를 시도하였다. 그리고 특정 부류의 일반 샘플을 이용했던 특정 용언의 부류가 아닌 사전에 존재하는 대부분의 용언들을 대상으로 연구를 진행하였다.

  • PDF

The Event Structure of Korean Unaccusative Verbs (한국어 비대격 동사의 사건구조)

  • 이준규;이정민
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.05a
    • /
    • pp.108-113
    • /
    • 2000
  • 자동사의 두 하위부류, 비대격(unaccusative) 동사와 비능격 (unergative)동사는 Perlmutter(1978)의 비대격 가설 (Unaccusative Hypothesis) 이후 여러 관점에서 활발히 노의 되어왔다. 한국어에서는 사건구조적 측면에서 두 부류가 차이를 보이며, 이런 사실은 인간의 인지작용과 밀접한 관련을 맺는다. 사건구조를 과정(process)사건과 상태(state)로 가정할 때 비능격 동사는 과정사건이, 비대격 동사는 상태사건이 부각된다. 비대격 동사도 두 가지 부류로 나뉠 수 있는데, '도착하다'처럼 과정사건이 언어표현에서 중시되지 않고 결과적인 상태부분만 중요시 되는 유형(unacc_type_1)과 '녹다'처럼 과정사건도 중시되는 사건 구조를 지닌 유형(unacc_type_2)이다. 결국 비대격 동사는 결과상태를 중시하는 사건구조를 중요시 하지만 과정사건의 지각 정도에 따라 다른 양상을 보인다. 한편 비대격 동사는 사동사와도 밀접한 연관 관계를 지닌다. 많은 논의에서 비대격/사동의 교체를 논리적 다의어로 보고 분석을 시도해 왔다. 따라서 사동사를 중심으로 분석한 경우와 비대격 동사를 중심으로 분석한 경우가 있다. 본고에서는 사동분석(causative analysis)은 한국어 기술에는 적절치 않다고 판단한다. 사동분석에서 도입하는 행동주의 사건유발부분이 반드시 비대격 동사의 표현에 필수적인 것은 아니기 때문이다. 끝으로 Pustejovsky(1995)의 생성어휘부(Generative Lexicon) 이론을 한국어에 맞게 확장·수정한 이정민·강범모·남승호(1997)의 모형에 따라 두 가지 유형의 비대격 동사의 어휘 의미구조를 표상한다.

  • PDF

Mapping Heterogenous Hierarchical Concept Classifications for the HLP Applications -A case of Sejong Semantic Classes and KorLexNoun 1.5- (인간언어공학에의 활용을 위한 이종 개념체계 간 사상 -세종의미부류와 KorLexNoun 1.5-)

  • Bae, Sun-Mee;Im, Kyoungup;Yoon, Aesun
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.6-13
    • /
    • 2009
  • 본 연구에서는 인간언어공학에서의 활용을 위해 세종전자사전의 의미부류와 KorLexNoun 1.5의 상위노드 간의 사상을 목표로 전문가의 수작업에 의한 세밀한 사상 방법론(fine-grained mapping method)을 제안한다. 또한 이질적인 두 이종 자원 간의 사상에 있어 각 의미체계의 이질성으로 인해 발생하는 여러 가지 문제점을 살펴보고, 그 해결방안을 제안한다. 본 연구는 세종의미부류체계가 밝히고자 했던 한국어의 의미구조와, Prinston WordNet을 참조로 하여 KorLexNoun에 여전히 영향을 미치고 있는 영어 의미구조를 비교함으로써 공통점과 차이점을 파악할 수 있고, 이를 바탕으로 언어 독립적인 개념체계를 구축하는 데 기여할 수 있다. 또한 향후 KorLex의 용언에 기술되어 있는 문형정보와 세종 전자사전의 용언의 격틀 정보를 통합 구축하여 구문분석에서 이용할 때, 세종 의미부류와 KorLexNoun의 상위노드를 통합 구축함으로써 논항의 일반화된 선택제약규칙의 기술에서 이용될 수 있다. 본 연구에서 제안된 사상방법론은 향후 이종 자원의 자동 사상 연구에서도 크게 기여할 것이다. 아울러 두 이종 자원의 사상을 통해 두 의미체계가 지닌 장점을 극대화하고, 동시에 단점을 상호 보완하여 보다 완전한 언어자원으로써 구문분석이나 의미분석에서 이용될 수 있다.

  • PDF

Grammaire du nom $pr{\acute{e}}dicatif$ : $\underline{yaksok}$ et dictionnaire (약속의 문법 : 서술명사의 통사.어휘적 기술과 사전)

  • Hong, Chai-Song
    • Annual Conference on Human and Language Technology
    • /
    • 1992.10a
    • /
    • pp.361-366
    • /
    • 1992
  • 이 발표에서는 공시적 기술 위주의 대규모 언어사전으로서의 현대한국어 사전을 구상할 때 성찰이 요구되는 서술명사의 처리방안을 생각해 보고자 한다. 보통명사의 한 하류부류인 서술명사로 특징지어지는 명사 약속을 실례로, 그 통사 어휘적 기술을 시도하고, 그 결과를 활용하는, 언어학적으로 근거있는 명사의 사전항목 구성을 검토해 보는 것이다. 약속의 항목에 명시적으로 표시되어야 할 주요 어휘 통사적 속성을 제시하고 또 이들의 사전적 표상을 위한 몇 가지 실제적 제안을 소개하려고 한다.

  • PDF

분류사와 명사 의미 부류

  • 최민우;강범모
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.395-401
    • /
    • 2000
  • 국어에서는 어떠한 대상의 수량을 표현할 때 수사와 함께 분류사(classifier)를 사용한다. 따라서 분류사는 그 특성상 수량 표현 구문을 형성하는 대상 명사와 의미적으로 밀접한 관련을 지니게되는데, 단순히 명사를 셈하는 것 뿐 아니라 명사의 의미적 특성을 명세(specify)해 준다고 할 수 있다. 본 연구에서는 이러한 명사와 분류사의 연관성에 초점을 맞추어 분류사의 사용에 따른 명사의 범주화 및 계층 구조를 보이고, 컴퓨터 말뭉치 자료를 이용하여 그 관계를 좀더 명확히 밝히는 것을 목적으로 한다. 이러한 연구는 언어를 전산적으로 처리하는데 필수적인 전산어휘부(computational lexicon)의 구축에 필요한 기초 작업이 될 수 있다.

  • PDF

On "Dimension" Nouns In Korean (한국어 "크기" 명사 부류에 대하여)

  • Song, Kuen-Young;Hong, Chai-Song
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.260-266
    • /
    • 2001
  • 본 논문은 불어 명사의 의미 통사적 분류와 관련된 '대상부류(classes d'objets)' 이론을 바탕으로 한국어의 "크기" 명사 부류에 대한 의미적, 형식적 기준을 설정함으로써 자연언어 처리에의 활용 방안을 모색하고자 한다. 한국어의 일부 명사들은 어떤 대상 혹은 현상의 다양한 속성이 특정 차원에서 갖는 규모의 의미를 표현한다 예를 들어, '길이', '깊이', '넓이', '높이', '키', '무게', '온도', '기온' 등이 이에 해당하는데, 이들은 측정의 개념과도 밀접한 연관을 가지며, 통사적으로도 일정한 속성을 공유한다. 즉 '측정하다', '재다' 등 측정의 개념을 나타내는 동사 및 수량 표현과 더불어 일정한 통사 형식으로 실현된다는 점이다. 본 논문에서는 이러한 조건을 만족시키는 한국어 명사들을 "크기" 명사라 명명하며, "크기" 명사와 특징적으로 결합하는 '측정하다', '재다' 등의 동사를 "크기" 명사 부류에 대한 적정술어라 부른다. 또한 "크기" 명사는 결합 가능한 단위명사의 종류 및 호응 가능한 정도 형용사의 종류 등에 따라 세부 하위유형으로 분류할 수도 있다. 따라서 주로 술어와의 통사적 결합관계를 기준으로 "크기" 명사 부류를 외형적으로 한정하고, 이 부류에 속하는 개개 명사들의 통사적 세부 속성을 전자사전의 체계로 구축한다면 한국어 "크기" 명사에 대한 전반적이고 총체적인 의미적 통사적 분류와 기술이 가능해질 것이다. 한편 "크기" 명사에 대한 연구는 반드시 이들 명사를 특징지어주는 단위명사 부류의 연구와 병행되어야 한다. 본 연구는 한국어 "크기" 명사를 한정하고 분류하는 보다 엄밀하고 형식적인 기준과 그 의미 통사 정보를 체계적으로 제시해 줄 것이다. 이러한 정보들은 한국어 자동처리에 활용되어 "크기" 명사를 포함하는 구문의 자동분석 및 산출 과정에 즉각적으로 활용될 수 있을 것이다. 또한, 이러한 정보들은 현재 구축중인 세종 전자사전에도 직접 반영되고 있다.teness)은 언화행위가 성공적이라는 것이다.[J. Searle] (7) 수로 쓰인 것(상수)(象數)과 시로 쓰인 것(의리)(義理)이 하나인 것은 그 나타난 것과 나타나지 않은 것들 사이에 어떠한 들도 없음을 말한다. [(성중영)(成中英)] (8) 공통의 규범의 공통성 속에 규범적인 측면이 벌써 있다. 공통성에서 개인적이 아닌 공적인 규범으로의 전이는 규범, 가치, 규칙, 과정, 제도로의 전이라고 본다. [C. Morrison] (9) 우리의 언어사용에 신비적인 요소를 부인할 수가 없다. 넓은 의미의 발화의미(utterance meaning) 속에 신비적인 요소나 애정표시도 수용된다. 의미분석은 지금 한글을 연구하고, 그 결과에 의존하여서 우리의 실제의 생활에 사용하는 $\ulcorner$한국어사전$\lrcorner$ 등을 만드는 과정에서, 어떤 의미에서 실험되었다고 말할 수가 있는 언어과학의 연구의 결과에 의존하여서 수행되는 철학적인 작업이다. 여기에서는 하나의 철학적인 연구의 시작으로 받아들여지는 이 의미분석의 문제를 반성하여 본다.반인과 다르다는 것이 밝혀졌다. 이 결과가 옳다면 한국의 심성 어휘집은 어절 문맥에 따라서 어간이나 어근 또는 활용형 그 자체로 이루어져 있을 것이다.으며, 레드 클로버 + 혼파 초지가 건물수량과 사료가치를 높이는데 효과적이었다.\ell}$ 이었으며 , yeast extract 첨가(添加)하여 배양시(培養時)는 yeast extract 농도(濃度)가 증가(增加)함에 따라 단백질(蛋白質) 함량(含量)도 증가(增加)하였다. 7. CHS-13 균주(菌株)의 RNA 함량(含量)은 $4.92{\times}10^{-2 }\;mg/m{\ell}$이었으며 yeast extract 농도(濃度)가 증가(增加)함에 따라 증가(增加)하다가 농도(濃度) 0.2%에서 최대함량(最大含量)을 나타내고 그후는 감소(減少)하였다.

  • PDF

Analyzing Vocabulary Characteristics of Colloquial Style Corpus and Automatic Construction of Sentiment Lexicon (구어체 말뭉치의 어휘 사용 특징 분석 및 감정 어휘 사전의 자동 구축)

  • Kang, Seung-Shik;Won, HyeJin;Lee, Minhaeng
    • Smart Media Journal
    • /
    • v.9 no.4
    • /
    • pp.144-151
    • /
    • 2020
  • In a mobile environment, communication takes place via SMS text messages. Vocabularies used in SMS texts can be expected to use vocabularies of different classes from those used in general Korean literary style sentence. For example, in the case of a typical literary style, the sentence is correctly initiated or terminated and the sentence is well constructed, while SMS text corpus often replaces the component with an omission and a brief representation. To analyze these vocabulary usage characteristics, the existing colloquial style corpus and the literary style corpus are used. The experiment compares and analyzes the vocabulary use characteristics of the colloquial corpus SMS text corpus and the Naver Sentiment Movie Corpus, and the written Korean written corpus. For the comparison and analysis of vocabulary for each corpus, the part of speech tag adjective (VA) was used as a standard, and a distinctive collexeme analysis method was used to measure collostructural strength. As a result, it was confirmed that adjectives related to emotional expression such as'good-','sorry-', and'joy-' were preferred in the SMS text corpus, while adjectives related to evaluation expressions were preferred in the Naver Sentiment Movie Corpus. The word embedding was used to automatically construct a sentiment lexicon based on the extracted adjectives with high collostructural strength, and a total of 343,603 sentiment representations were automatically built.

Cross-Enrichment of the Heterogenous Ontologies Through Mapping Their Conceptual Structures: the Case of Sejong Semantic Classes and KorLexNoun 1.5 (이종 개념체계의 상호보완방안 연구 - 세종의미부류와 KorLexNoun 1.5 의 사상을 중심으로)

  • Bae, Sun-Mee;Yoon, Ae-Sun
    • Language and Information
    • /
    • v.14 no.1
    • /
    • pp.165-196
    • /
    • 2010
  • The primary goal of this paper is to propose methods of enriching two heterogeneous ontologies: Sejong Semantic Classes (SJSC) and KorLexNoun 1.5 (KLN). In order to achieve this goal, this study introduces the pros and cons of two ontologies, and analyzes the error patterns found during the fine-grained manual mapping processes between them. Error patterns can be classified into four types: (1) structural defectives involved in node branching, (2) errors in assigning the semantic classes, (3) deficiency in providing linguistic information, and (4) lack of the lexical units representing specific concepts. According to these error patterns, we propose different solutions in order to correct the node branching defectives and the semantic class assignment, to complement the deficiency of linguistic information, and to increase the number of lexical units suitably allotted to their corresponding concepts. Using the results of this study, we can obtain more enriched ontologies by correcting the defects and errors in each ontology, which will lead to the enhancement of practicality for syntactic and semantic analysis.

  • PDF