• Title/Summary/Keyword: 어휘평가

Search Result 388, Processing Time 0.044 seconds

Development of Evaluation Model for achieving the Program Educational Objectives in KEC2005 (한국공학교육인증의 '프로그램 교육목표' 달성을 위한 평가 모형 개발)

  • Kim, Myoung-Lang;Yoon, Woo-Young;Kim, Bok-Ki
    • Journal of Engineering Education Research
    • /
    • v.11 no.2
    • /
    • pp.42-49
    • /
    • 2008
  • Though the 'Program Educational Objectives' is the first and important criterion in ABEEK's engineering education accreditation, exact meaning and implementation methods have not been understood well. It was often confused with 'Program Outcomes' and its implementation and evaluation methods do not reflected well on the concepts of "outcomes based and demand driven education". A new implementation model for 'Program Educational Objectives' has been developed using step by step application. The model explains the meaning of every step (phase), and key constituents in each phase. The specialization and CQI of the program could be satisfied by applying the model properly.

A Human Sensibility Ergonomics Method for Vehicle Driving Simulator and Verbal Expressions Collected (자동차 주행 시뮬레이터의 운동감 재현 및 감성평가를 위한 감성어휘의 수집)

  • Jeong, Yeong-Hun;Eom, Seong-Suk;Son, Gwon;Choe, Gyeong-Hyeon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.1-14
    • /
    • 2000
  • Driving simulators have been developed for evaluating users' reaction to various driving situations. Dynamic simulators have, however, limitations of the motion feedback in space. Therefore, this paper presents a driving simulator and suggests a human sensibility ergonomics (kansei engineering) method to be used in improving sense of motion through a vehicle simulator. Human sensibility ergonomics(kansei engineering) is defined as translating technology of the customer' feeling about a new product into design elements. Constituents of the simulator were defined and the virtual world was generated by the object modeling technique. Senses perceived were classified into feelings of velocity, acceleration, rotation, and vibration based on the human sensibility associated with driving. And the most frequent verbal expressions were collected from 17 male subjects to define complex human sensibility.

  • PDF

Quantitative Evaluation of Bags-of-Features Method Using Part-of-Speech Tagging (품사 부착 실험을 통한 Bags-of-Features 방법의 정량적 평가)

  • Lee, Chanhee;Lee, Seolhwa;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.298-300
    • /
    • 2017
  • 본 논문에서는 단순하지만 효과적인 단어 표현 방법인 Bags of Features에 대한 비교 실험을 수행한다. Bags of Features는 어휘집의 크기에 제한이 없으며, 문자 단위의 정보를 반영하고, 벡터화 과정에서 신경망 구조에 의존하지 않는 단어 표현 방법이다. 영어 품사 부착 실험을 사용하여 실험한 결과, one-hot 인코딩을 사용한 모델과 대비하여 학습 데이터에 존재하지 않는 단어의 경우 49.68%, 전체 부착 정확도는 0.96% 향상이 관찰되었다. 또한, Bags of Features를 사용한 모델은 기존의 영어 품사 부착 분야의 최첨단 모델들 중 학습 데이터 외의 추가적인 데이터를 활용하지 않는 모델들과 비견할 만한 성능을 보였다.

  • PDF

Temporal Information Extraction from Korean News for Event Detection and Tracking (사건 탐지/추적을 위한 시간 정보 추출)

  • Kim, Pyung;Sung, Ki-Youn;Myaeng, Sung-Hyon
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.22-29
    • /
    • 2003
  • 시간정보는 사건 탐지/추적 시스템은 물론 정보 추출, 질의/응답 시스템 등에서 매우 중요한 역할을 한다. 본 연구에서는 한국어 신문 기사를 대상으로 시간 표현을 추출하고 정규화한 후 사건 관련 동사와 연결하는 자동화된 방법들을 제안하였다. 시간 표현을 추출하기 위해서 품사정보로 구축된 패턴과 시간 표현 어휘가 사용되었고, 정규화 과정과 사건 관련 동사와의 연결을 위한 규칙이 만들어졌다. 한국어 신문을 대상으로 제안한 방법의 단계별 평가를 수행하였고, 제안하는 방법의 확장성을 보이기 위해 서로 다른 도메인에도 실험을 하였다.

  • PDF

Method of Document Retrieval Using Word Embeddings and Disease-Centered Document Clusters (단어 의미 표현과 질병 중심 의학 문서 클러스터 기반 의학 문서 검색 기법)

  • Jo, Seung-Hyeon;Lee, Kyung-Soon
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.51-55
    • /
    • 2016
  • 본 논문에서는 임상 의사 결정 지원을 위한 UMLS와 위키피디아를 이용하여 지식 정보를 추출하고 질병중심 문서 클러스터와 단어 의미 표현을 이용하여 질의 확장 및 문서를 재순위화하는 방법을 제안한다. 질의로는 해당 환자가 겪고 있는 증상들이 주어진다. UMLS와 위키피디아를 사용하여 병명과 병과 관련된 증상, 검사 방법, 치료 방법 정보를 추출하고 의학 인과 관계를 구축한다. 또한, 위키피디아에 나타나는 의학 용어들에 대하여 단어의 효율적인 의미 추정 기법을 이용하여 질병 어휘의 의미 표현 벡터를 구축하고 임상 인과 관계를 이용하여 질병 중심 문서 클러스터를 구축한다. 추출한 의학 정보를 이용하여 질의와 관련된 병명을 추출한다. 이후 질의와 관련된 병명과 단어 의미 표현을 이용하여 확장 질의를 선택한다. 또한, 질병 중심 문서 클러스터를 이용하여 문서 재순위화를 진행한다. 제안 방법의 유효성을 검증하기 위해 TREC Clinical Decision Support(CDS) 2014, 2015 테스트 컬렉션에 대해 비교 평가한다.

  • PDF

A Study on Lexicon Integrated Convolutional Neural Networks for Sentiment Analysis (감성 분석을 위한 어휘 통합 합성곱 신경망에 관한 연구)

  • Yoon, Joo-Sung;Kim, Hyeon-Cheol
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.916-919
    • /
    • 2017
  • 최근 딥러닝의 발달로 인해 Sentiment analysis분야에서도 다양한 기법들이 적용되고 있다. 이미지, 음성인식 분야에서 높은 성능을 보여주었던 Convolutional Neural Networks (CNN)은 최근 자연어처리 분야에서도 활발하게 연구가 진행되고 있으며 Sentiment analysis에도 효과적인 것으로 알려져 있다. 기존의 머신러닝에서는 lexicon을 이용한 기법들이 활발하게 연구되었지만 word embedding이 등장하면서 이러한 시도가 점차 줄어들게 되었다. 그러나 lexicon은 여전히 sentiment analysis에서 유용한 정보를 제공한다. 본 연구에서는 SemEval 2017 Task4에서 제공한 Twitter dataset과 다양한 lexicon corpus를 사용하여 lexicon을 CNN과 결합하였을 때 모델의 성능이 얼마큼 향상되는지에 대하여 연구하였다. 또한 word embedding과 lexicon이 미치는 영향에 대하여 분석하였다. 모델을 평가하는 metric은 positive, negative, neutral 3가지 class에 대한 macroaveraged F1 score를 사용하였다.

Quantitative Evaluation of Bags-of-Features Method Using Part-of-Speech Tagging (품사 부착 실험을 통한 Bags-of-Features 방법의 정량적 평가)

  • Lee, Chanhee;Lee, Seolhwa;Lim, Heuiseok
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.298-300
    • /
    • 2017
  • 본 논문에서는 단순하지만 효과적인 단어 표현 방법인 Bags of Features에 대한 비교 실험을 수행한다. Bags of Features는 어휘집의 크기에 제한이 없으며, 문자 단위의 정보를 반영하고, 벡터화 과정에서 신경망 구조에 의존하지 않는 단어 표현 방법이다. 영어 품사 부착 실험을 사용하여 실험한 결과, one-hot 인코딩을 사용한 모델과 대비하여 학습 데이터에 존재하지 않는 단어의 경우 49.68%, 전체 부착 정확도는 0.96% 향상이 관찰되었다. 또한, Bags of Features를 사용한 모델은 기존의 영어 품사 부착 분야의 최첨단 모델들 중 학습 데이터 외의 추가적인 데이터를 활용하지 않는 모델들과 비견할 만한 성능을 보였다.

  • PDF

Research to establish a road map for the standardization in military and commercial terminology (민·군규격용어 표준화를 위한 로드맵 구축 연구)

  • Park, jeong-ho;Choi, young-ho;Im, ik-soon;Jang, hyo-jun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.251-252
    • /
    • 2015
  • 본 연구는 국방규격서의 전문어, 오용어, 어문규정 및 순화어 미(未)준수 어휘를 추출, 정의 또는 순화어로 정제하는 맵핑구조를 제시, 민 군규격용어 표준화를 위한 정보업무 로드맵을 구축하여 민간용어와의 호환성 및 일관성을 유지할 수 있는 지원체계를 연구하였다. 대상 규격용어는 KS용어표준 원칙을 기본으로 한 신뢰도 평가와 텍스트 마이닝 (text mining)빈도분석을 이용하여 선정하였으며, 시소러스(thesaurus) 체계를 삽입, 개념기반 서비스의 확장성을 제시하였다. 이를 기반으로 산출된 규격용어 DB는 민간 및 국방 관련분야의 용어표준관리 정보체계에 검색 및 용어설명에 활용될 수 있다.

  • PDF

Implementation of Question-Answering System using Wikipedia (위키백과를 이용한 질의응답 시스템의 구현)

  • Park, Young-Min;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.206-208
    • /
    • 2012
  • 본 논문에서는 위키백과를 이용한 지식DB구축의 예로서 연예인 관련 정보들을 자동으로 추출한다. 우리는 위키백과의 연예인 문서로부터 생년월일, 학력, 본명 등 총 9가지 정보들을 추출하고 이를 지식DB로 구축한다. 또한 추출된 지식 DB를 이용하여 질의응답 시스템을 구현하여 유용함을 입증하였다. 질의응답 시스템은 어휘의미패턴 방법으로 질의를 분석하고, 템플릿 기반의 문장생성 방법으로 정답을 자연어문장으로 생성한다. 성능 평가결과 총 6471명의 연예인 정보들을 추출하였고 95%에 해당하는 질의분석 성능을 제공하였다.

  • PDF

Performance Evaluation of Nonkeyword Modeling and Postprocessing for Vocabulary-independent Keyword Spotting (가변어휘 핵심어 검출을 위한 비핵심어 모델링 및 후처리 성능평가)

  • Kim, Hyung-Soon;Kim, Young-Kuk;Shin, Young-Wook
    • Speech Sciences
    • /
    • v.10 no.3
    • /
    • pp.225-239
    • /
    • 2003
  • In this paper, we develop a keyword spotting system using vocabulary-independent speech recognition technique, and investigate several non-keyword modeling and post-processing methods to improve its performance. In order to model non-keyword speech segments, monophone clustering and Gaussian Mixture Model (GMM) are considered. We employ likelihood ratio scoring method for the post-processing schemes to verify the recognition results, and filler models, anti-subword models and N-best decoding results are considered as an alternative hypothesis for likelihood ratio scoring. We also examine different methods to construct anti-subword models. We evaluate the performance of our system on the automatic telephone exchange service task. The results show that GMM-based non-keyword modeling yields better performance than that using monophone clustering. According to the post-processing experiment, the method using anti-keyword model based on Kullback-Leibler distance and N-best decoding method show better performance than other methods, and we could reduce more than 50% of keyword recognition errors with keyword rejection rate of 5%.

  • PDF