• Title/Summary/Keyword: 어휘추출

Search Result 438, Processing Time 0.022 seconds

Pivot Discrimination Approach for Paraphrase Extraction from Bilingual Corpus (이중 언어 기반 패러프레이즈 추출을 위한 피봇 차별화 방법)

  • Park, Esther;Lee, Hyoung-Gyu;Kim, Min-Jeong;Rim, Hae-Chang
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.1
    • /
    • pp.57-78
    • /
    • 2011
  • Paraphrasing is the act of writing a text using other words without altering the meaning. Paraphrases can be used in many fields of natural language processing. In particular, paraphrases can be incorporated in machine translation in order to improve the coverage and the quality of translation. Recently, the approaches on paraphrase extraction utilize bilingual parallel corpora, which consist of aligned sentence pairs. In these approaches, paraphrases are identified, from the word alignment result, by pivot phrases which are the phrases in one language to which two or more phrases are connected in the other language. However, the word alignment is itself a very difficult task, so there can be many alignment errors. Moreover, the alignment errors can lead to the problem of selecting incorrect pivot phrases. In this study, we propose a method in paraphrase extraction that discriminates good pivot phrases from bad pivot phrases. Each pivot phrase is weighted according to its reliability, which is scored by considering the lexical and part-of-speech information. The experimental result shows that the proposed method achieves higher precision and recall of the paraphrase extraction than the baseline. Also, we show that the extracted paraphrases can increase the coverage of the Korean-English machine translation.

  • PDF

Investigation of the Emotional Characteristics of White for Designing White Based Products (백색 제품 디자인을 위한 감성적 특성 연구)

  • Na, Noo-Ree;Suk, Hyeon-Jeong;Lee, Jae-In
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.297-306
    • /
    • 2012
  • In this study we investigated emotional characteristics of various whites which have slightly different nuances to suggest guidelines that help designers to select appropriate colors when designing white based products. The study involved three different procedures. In experiment 1, we selected 20 emotional words through a survey (N=30) among 60 words, which we picked from literature review that was thought to be appropriate to evaluate product colors. In experiment 2, we evaluated the emotional characteristics of 13 basic colors from the I.R.I Hue & Tone 120 system (N=30) using previously selected emotional words, to find relative emotional positions of white in comparison to other colors. Based on the ratings, factor analysis was conducted and consequently four factors were extracted: flamboyant, elegant, clear, and soft. Accordingly, the emotional characteristics of the 13 colors were profiled and compared with those of white. Finally, in experiment 3, we conducted an evaluation of emotional characteristics on 25 whites with different nuances facilitating the four factors obtained in experiment 2. The color stimuli used in experiments were measured in terms of CIE 1976 $L^*a^*b^*$, and regression analysis was performed in order to predict the emotional characteristics through the L, a, and b values of a color, as long as that is perceived as a white. Throughout three empirical studies, we observed three overruling tendencies : First, there are four important factors when evaluating product color - flamboyant, elegance, clearness and softness; second, white is dominantly the most elegant in comparison to other colors; third, the emotional factors of the study were affected by some combinations of attributes of colors rather than by all three-hue, saturation and brightness. In addition, the equations derived from the regression analysis in experiment 3, it is expected that designers may predict the emotional distinction between nuances of white.

  • PDF

Learning of Artificial Neural Networks about the Prosody of Korean Sentences. (인공 신경망의 한국어 운율 학습)

  • Shin Dong-Yup;Min Kyung-Joong;Lim Un-Cheon
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.121-124
    • /
    • 2001
  • 음성 합성기의 합성음의 자연감을 높이기 위해 자연음에 내재하는 정확한 운율 법칙을 구하여 음성합성 시스템에서 이를 구현해 주어야 한다 무제한 어휘 음성합성 시스템의 문-음성 합성기에서 필요한 운율 법칙은 언어학적 정보를 이용해 구하거나, 자연음에서 추출하고 있다 그러나 추출한 운율 법칙이 자연음에 내재하는 모든 운율 법칙을 반영하지 못했거나, 잘못 구현되는 경우에는 합성음의 자연성이 떨어지게 된다. 이런 점을 고려하여 본 논문에서는 한국어 자연음을 분석하여 추출한 운율 정보를 인공 신경망이 학습하도록 하고 훈련을 마친 인공 신경망에 문장을 입력하고, 출력으로 나오는 운율 정보와 자연음의 운율 정보를 비교한 결과 제안한 인공 신경망이 자연음에 내재하고 있는 운율을 학습할 수 있음을 알 수 있었다. 운율의 3대 요소는 피치 , 지속시간, 크기의 변화이다. 제안한 인공 신경망이 한국어 문장의 음소 열을 입력으로 받아들이고, 각 음소의 지속시간에 따른 피치변화와 크기 변화를 출력으로 내보내면 자연음을 분석해 구한 각 음소의 운율 정보인 목표 패턴과 출력 패턴 의 오차를 최소화하도록 인공 신경망의 가중치를 조절할 수 있도록 설계하였다. 지속시간에 따른 각 음소의 피치와 크기 변화를 학습시키기 위해 피치 및 크기 인공 신경망을 구성하였다. 이들 인공 신경망을 훈련시키기 위해 먼저 음소 균형 문장 군을 구축하여야 하고, 이들 언어 자료를 특정 화자가 일정 환경에서 읽고 이를 녹음하여 , 분석하여 구한운율 정보를 운율 데이터베이스로 구축하였다. 문장 내의 각 음소에 대해 지속 시간과 피치 변화 그리고 크기 변화를 구하고, 곡선 적응 방법을 이용하여 각 변화 곡선에 대한 다항식 계수와 초기 값을 구해 운율 데이터베이스를 구축한다. 이 운율 데이터베이스의 일부는 인공 신경망을 훈련시키는데 이용하고, 나머지로 인공 신경망의 성능을 평가하여 인공 신경망이 운율 법칙을 학습할 수 있었다. 언어 자료의 문장 수를 늘리고 발음 횟수를 늘려 운율 데이터베이스를 확장하면 인공 신경망의 성능을 높일 수 있고, 문장 내의 음소의 수를 감안하여 인공 신경망의 입력 단자의 수는 계산량과 초분절 요인을 감안하여 결정해야 할 것이다

  • PDF

An Extraction Algorithm of Compound Field-associated Terms for Korean Document Classifications (한글문서 분류용으로 이용할 복합어로 구성된 분야연상어의 추출법)

  • Lee, Samuel Sang-kon
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.636-649
    • /
    • 2005
  • Field-associated Terms itself have field Information. So, they determine field of document just like when human being perceives field. In case of Korean, we organized and experimented them by collecting approximately IS,999 document banks that are classified into 180 fields. We obtained high precision of extraction that 88,782 single field-associated terms are contracted into 8,405 ones thus recording compression rate as approximately 9$\%$ and recall as above 0.77 (average 0.85), precision as above 0.90 (average 0.94). By applying established field-associated terms to initial determination for document classification and comparing it with filed determination by human being, we got correct answers above approximately 90$\%$. We can use results of research as fundamental research for initial stage and apply it document retrieval between multilingual environment thus utilizing it as fundamental research for multilingual information retrieval.

Generalization of error decision rules in a grammar checker using Korean WordNet, KorLex (명사 어휘의미망을 활용한 문법 검사기의 문맥 오류 결정 규칙 일반화)

  • So, Gil-Ja;Lee, Seung-Hee;Kwon, Hyuk-Chul
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.405-414
    • /
    • 2011
  • Korean grammar checkers typically detect context-dependent errors by employing heuristic rules that are manually formulated by a language expert. These rules are appended each time a new error pattern is detected. However, such grammar checkers are not consistent. In order to resolve this shortcoming, we propose new method for generalizing error decision rules to detect the above errors. For this purpose, we use an existing thesaurus KorLex, which is the Korean version of Princeton WordNet. KorLex has hierarchical word senses for nouns, but does not contain any information about the relationships between cases in a sentence. Through the Tree Cut Model and the MDL(minimum description length) model based on information theory, we extract noun classes from KorLex and generalize error decision rules from these noun classes. In order to verify the accuracy of the new method in an experiment, we extracted nouns used as an object of the four predicates usually confused from a large corpus, and subsequently extracted noun classes from these nouns. We found that the number of error decision rules generalized from these noun classes has decreased to about 64.8%. In conclusion, the precision of our grammar checker exceeds that of conventional ones by 6.2%.

Constructing a Korean Subcategorization Dictionary with Semantic Roles using Thesaurus and Predicate Patterns (시소러스와 술어 패턴을 이용한 의미역 부착 한국어 하위범주화 사전의 구축)

  • Yang, Seung-Hyun;Kim, Young-Sum;Woo, Yo-Sub;Yoon, Deok-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.3
    • /
    • pp.364-372
    • /
    • 2000
  • Subcategorization, defining dependency relation between predicates and their complements, is an important source of knowledge for resolving syntactic and semantic ambiguities arising in analyzing sentences. This paper describes a Korean subcategorization dictionary, particularly annotated with semantic roles of complements coupled with thesaural semantic hierarchy as well as syntactic dependencies. For annotating roles, we defined 25 semantic roles associated with surface case markers that can be used to derive semantic structures directly from syntactic ones. In addition, we used more than 120,000 entries of thesaurus to specify concept markers of noun complements, and also used 47 and 17 predicate patterns for verbs and adjectives, respectively, to express dependency relation between predicates and their complements. Using a full-fledged thesaurus for specifying concept markers makes it possible to build an effective selectional restriction mechanism coupled with the subcategorization dictionary, and using the standard predicate patterns for specifying dependency relations makes it possible to avoid inconsistency in the results and to reduce the costs for constructing the dictionary. On the bases of these, we built a Korean subcategorization dictionary for frequently used 13,000 predicates found in corpora with the aid of a tool specially designed to support this task. An experimental result shows that this dictionary can provide 72.7% of predicates in corpora with appropriate subcategorization information.

  • PDF

A Study on the Retrieval Effectiveness of KoreaMed using MeSH Search Filter and Word-Proximity Search (검색용 MeSH 필터와 단어인접탐색 기법을 활용한 KoreaMed 검색 효율성 향상 연구)

  • Jeong, So-Na;Jeong, Ji-Na
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.596-607
    • /
    • 2017
  • This study examined the method for adding related to "stomach neoplasms" as filters to the Medical Subject Headings (MeSH) for search as well as a method for improving the search efficiency through a word-proximity search by measuring the distance of co-occurring terms. A total of 8,625 articles published between 2007 and 2016 with the major topic terms "stomach neoplasms" were downloaded from PubMed article titles. The vocabulary to be added to the MeSH for search were analyzed. The search efficiency was verified by 277 articles that had "Stomach Neoplasms" indexed as MEDLINE MeSH in KoreaMed. As a result, 973 terms were selected as the candidate vocabulary. "Gastric Cancer" (2,780 appearances) was the most frequent term and 7,376 compound words (88.51%) combined the histological terms of "stomach" and "neoplasm", such as "gastric adenocarcinoma" and "gastric MALT lymphoma". A total of 5,234 compounds words (70.95%), in which the co-occurring distance was two words, were found. The matching rate through the MEDLINE MeSH and KoreaMed MeSH Indexer was 209 articles (75.5%). The search efficiency improved to 263 articles (94.9%) when the search filters were added, and to 268 articles (96.7%) when the 13 word-proximity search technique of the co-occurring terms was applied. This study showed that the use of a thesaurus as a means of improving the search efficiency in a natural language search could maintain the advantages of controlled vocabulary. The search accuracy can be improved using the word-proximity search instead of a Boolean search.

Predicting the Direction of the Stock Index by Using a Domain-Specific Sentiment Dictionary (주가지수 방향성 예측을 위한 주제지향 감성사전 구축 방안)

  • Yu, Eunji;Kim, Yoosin;Kim, Namgyu;Jeong, Seung Ryul
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.95-110
    • /
    • 2013
  • Recently, the amount of unstructured data being generated through a variety of social media has been increasing rapidly, resulting in the increasing need to collect, store, search for, analyze, and visualize this data. This kind of data cannot be handled appropriately by using the traditional methodologies usually used for analyzing structured data because of its vast volume and unstructured nature. In this situation, many attempts are being made to analyze unstructured data such as text files and log files through various commercial or noncommercial analytical tools. Among the various contemporary issues dealt with in the literature of unstructured text data analysis, the concepts and techniques of opinion mining have been attracting much attention from pioneer researchers and business practitioners. Opinion mining or sentiment analysis refers to a series of processes that analyze participants' opinions, sentiments, evaluations, attitudes, and emotions about selected products, services, organizations, social issues, and so on. In other words, many attempts based on various opinion mining techniques are being made to resolve complicated issues that could not have otherwise been solved by existing traditional approaches. One of the most representative attempts using the opinion mining technique may be the recent research that proposed an intelligent model for predicting the direction of the stock index. This model works mainly on the basis of opinions extracted from an overwhelming number of economic news repots. News content published on various media is obviously a traditional example of unstructured text data. Every day, a large volume of new content is created, digitalized, and subsequently distributed to us via online or offline channels. Many studies have revealed that we make better decisions on political, economic, and social issues by analyzing news and other related information. In this sense, we expect to predict the fluctuation of stock markets partly by analyzing the relationship between economic news reports and the pattern of stock prices. So far, in the literature on opinion mining, most studies including ours have utilized a sentiment dictionary to elicit sentiment polarity or sentiment value from a large number of documents. A sentiment dictionary consists of pairs of selected words and their sentiment values. Sentiment classifiers refer to the dictionary to formulate the sentiment polarity of words, sentences in a document, and the whole document. However, most traditional approaches have common limitations in that they do not consider the flexibility of sentiment polarity, that is, the sentiment polarity or sentiment value of a word is fixed and cannot be changed in a traditional sentiment dictionary. In the real world, however, the sentiment polarity of a word can vary depending on the time, situation, and purpose of the analysis. It can also be contradictory in nature. The flexibility of sentiment polarity motivated us to conduct this study. In this paper, we have stated that sentiment polarity should be assigned, not merely on the basis of the inherent meaning of a word but on the basis of its ad hoc meaning within a particular context. To implement our idea, we presented an intelligent investment decision-support model based on opinion mining that performs the scrapping and parsing of massive volumes of economic news on the web, tags sentiment words, classifies sentiment polarity of the news, and finally predicts the direction of the next day's stock index. In addition, we applied a domain-specific sentiment dictionary instead of a general purpose one to classify each piece of news as either positive or negative. For the purpose of performance evaluation, we performed intensive experiments and investigated the prediction accuracy of our model. For the experiments to predict the direction of the stock index, we gathered and analyzed 1,072 articles about stock markets published by "M" and "E" media between July 2011 and September 2011.

A Study on the Emotional Reaction to the Interior Design - Focusing on the Worship Space in the Church Buildings - (실내공간 구성요소에 의한 감성반응 연구 - 기독교 예배공간 강단부를 중심으로 -)

  • Lee, Hyun-Jeong;Lee, Gyoo-Baek
    • Archives of design research
    • /
    • v.18 no.4 s.62
    • /
    • pp.257-266
    • /
    • 2005
  • The purpose of this study is to investigate the psychological reaction to the image of the worship space in the church buildings and to quantify its contribution of the stimulation elements causing such reaction, and finally to suggest basic data for realizing emotional worship space of the church architecture. For this, 143 christians were surveyed to analyze the relationship between 23 emotional expressions extracted from the worship space and 32 images of the worship space. The combined data was described with the two dimensional dispersion using the quantification theory III. The analysis found out that 'simplicity-complexity' of the image consisted of the horizontal axis (the x-axis) and 'creativity' of the image the vertical axis(the y-axis). In addition, to extract the causal relationship between the value of emotional reaction and its stimulation elements quantitatively, the author indicated 4 emotional word groups such as simple, sublime for x-axis and typical creative for y-axis based on its similarity by the cluster analysis, The quantification theory I was also used with total value of equivalent emotional words as the standard variance and the emotional stimulation elements of the worship space as the independent variance. 9 specific examples of the emotional stimulation elements were selected including colors and shapes of the wall and the ceiling, shapes and finish of the floor materials, window shapes, and the use of the symbolic elements. Furthermore, 31 subcategories were also chosen to analyse their contribution on the emotional reaction. As a result, the color and finish of the wall found to be the most effective element on the subjects' emotional reaction, while the symbolic elements and the color of the wall found to be the least effective. It is estimated that the present study would be helpful to increase the emotional satisfaction of the users and to approach a spatial design through satisfying the types and purposes of the space.

  • PDF

A Study on the Diphone Recognition of Korean Connected Words and Eojeol Reconstruction (한국어 연결단어의 이음소 인식과 어절 형성에 관한 연구)

  • ;Jeong, Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.46-63
    • /
    • 1995
  • This thesis described an unlimited vocabulary connected speech recognition system using Time Delay Neural Network(TDNN). The recognition unit is the diphone unit which includes the transition section of two phonemes, and the number of diphone unit is 329. The recognition processing of korean connected speech is composed by three part; the feature extraction section of the input speech signal, the diphone recognition processing and post-processing. In the feature extraction section, the extraction of diphone interval in input speech signal is carried and then the feature vectors of 16th filter-bank coefficients are calculated for each frame in the diphone interval. The diphone recognition processing is comprised by the three stage hierachical structure and is carried using 30 Time Delay Neural Networks. particularly, the structure of TDNN is changed so as to increase the recognition rate. The post-processing section, mis-recognized diphone strings are corrected using the probability of phoneme transition and the probability o phoneme confusion and then the eojeols (Korean word or phrase) are formed by combining the recognized diphones.

  • PDF