• Title/Summary/Keyword: 어휘분류

Search Result 309, Processing Time 0.021 seconds

Answer Recommendation for Knowledge Search using Term Frequency (어휘 빈도를 활용한 지식 검색에서의 답변 추천 시스템)

  • Lee, Ho-Chang;Tak, Hyun-Ki;Lee, Hyun-Ah
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.315-317
    • /
    • 2012
  • 지식iN 등의 지식검색 서비스는 잘못된 답변으로 인한 낮은 신뢰성과 다수의 중복 답변 등의 문제점을 가진다. 질의문 '세상에서 가장 큰 나라'에 대해서 관련된 모든 질문과 답변을 제시하지 않고 질의문과 관련된 다수의 답변을 분석하여 답변 '러시아'를 추천하여 제시할 수 있다면 지식검색의 효용성과 신뢰성이 크게 향상될 수 있다. 본 논문에서는 질문-답변의 유형을 단어, 글, 도표, 목록의 네가지로 분류하고, 그 중 단어 유형에 대한 답변 추천 방법을 제시한다. 질의문에 대해 검색된 질문을 군집화하고, 질문에 대한 답변들에 대해서 TF, IDF, 어휘간 거리 정보를 다양하게 결합하여 어휘의 점수를 계산한다. 각 군집에서 가장 높은 점수를 가지는 어휘를 해당 군집에서 가장 중요한 어휘로 보고 추천 정답으로 제시한다. 단어 유형인 질문 100개에 대한 네이버 지식iN에 대한 시스템 평가에서 추천된 상위 1위에 대해서는 68%의 정답률을, 상위 5위까지에 대해서는 89%의 정답률을 보였다.

Generation and Recognition Language Model for Spoken Language Parser (구어파서를 위한 생성 인식 언어모델)

  • Jeong, Hong;Hwang, Kwang-Il
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.167-172
    • /
    • 1999
  • 구어는 프로그래밍 언어와는 달리 주어진 문장 내에서의 해당 어휘의 뜻(semantic information)을 알고 다른 어휘들과의 연관성 (grammatical information)을 알아야만 적절한 형태소분석이 가능하다. 또한 구어는 방대한 양의 어휘들로 구성되어 있으며 사용하는 사람마다의 다양한 응용과 공식화되기 어려운 수많은 예외들로 운용되기 때문에 단순히 찾아보기표와 오토마타만으로는 형태소분석에 한계가 있다. 이에 본 논문에서는 주어진 어휘집과 그 어휘들로 만들어진 다양한 문장들로부터 구어운용의 근본기제를 스스로 학습해나가는 강화학습중심의 언어모델을 제안하고 실제로 한국어 형태소분석에 적용하여 그 성능과 특성을 파악해보았다. 구어파서의 입력은 음절단위의 발음이며 인간이 문장을 듣거나 보는 것과 동일하게 시간에 따라 순차적으로 입력된다. 파서의 출력 또한 시간에 따라 변화되면서 나타나며 입력된 연속음절을 형태소단위로 분리(segmentation)하고 분류(labeling)한 결과를 나타낸다. 생성인식 언어모델이 기존의 언어모델과 다른 점은 구어 파싱에 있어서 필수적인 미등륵어에 대한 유연성과 앞단의 음성인식기 오류에 적절한 반응(fault tolerance)을 나타내는 것이다.

  • PDF

Methodologies for Constructing KorLex 1.5 (a Korean WordNet) and its Semantic Structure (한국어 어휘의미망 KorLex 1.5의 구축방법론과 정보구조)

  • Yoon, Aesun;Kwon, Hyuk-Chul;Lee, Eun-Ryoung;Hwang, Soon-Hee
    • Annual Conference on Human and Language Technology
    • /
    • 2008.10a
    • /
    • pp.42-47
    • /
    • 2008
  • 1980년대 중반부터 지난 20여 년간 구축해 온 영어 워드넷(PWN)은 인간의 심상어휘집을 재현하려는 목적으로 개발되기 시작하였으나, 그 활용 가능성에 주목한 것은 자연언어처리와 지식공학 분야다. 컴퓨터 매개 의사소통(CMC), 인간-컴퓨터 상호작용(HCI)에서 인간 언어를 자연스럽게 사용하여 필요한 정보를 획득하기 위해서는 의미와 지식의 처리가 필수적인데, 그 해결의 실마리를 어휘라는 실체를 가진 언어단위에서 찾을 수 있기 때문이다. 이후 전 세계적으로 약 50개 언어의 어휘의미망이 PWN을 참조모델로 구축되어 다국어처리의 기반을 제공할 뿐 아니라, 시맨틱 웹 이후 더욱 주목 받고 다양한 방식으로 활용되고 있다. 본고는 PWN을 참조 모델로 2004년부터 2007년까지 구축한 한국어 어휘의미망 KorLex 1.5를 소개하는 데 있다. 현재 KorLex은 명사, 동사, 형용사, 부사 및 분류사로 구성되며, 약 13만 개의 신셋과 약 15만 개의 어의를 포함하고 있다.

  • PDF

A Study on the Classification System of KDC for School Libraries - Focused on Vocabulary Analysis of Elementary Materials - (학교도서관을 위한 KDC 분류체계에 관한 연구 - 초등학생관련 문헌의 어휘분석을 중심으로 -)

  • Kim, Jeong-Hyen
    • Journal of Korean Library and Information Science Society
    • /
    • v.35 no.4
    • /
    • pp.171-191
    • /
    • 2004
  • This study presents revision scheme of Korean Decimal Classification appropriate for classification of children-related materials, mainly centered on social science(300) and pure science(400) occupying the majority of children-related materials in school Libraries. Towards this goal, 1 have studied the development and use of classification system for children-related materials available in domestic and overseas school libraries or children's libraries, and researched elementary school 4th, 5th, and 6th grade students' degree of understanding on classification item terms and children-related materials terms used for KDC's social science and Pure science. Based on the results of analysis, f have presented revision scheme of Korean Decimal Classification item terms and class numbers for children-related materials.

  • PDF

Query Expansion Based on Word Graphs Using Pseudo Non-Relevant Documents and Term Proximity (잠정적 부적합 문서와 어휘 근접도를 반영한 어휘 그래프 기반 질의 확장)

  • Jo, Seung-Hyeon;Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.189-194
    • /
    • 2012
  • In this paper, we propose a query expansion method based on word graphs using pseudo-relevant and pseudo non-relevant documents to achieve performance improvement in information retrieval. The initially retrieved documents are classified into a core cluster when a document includes core query terms extracted by query term combinations and the degree of query term proximity. Otherwise, documents are classified into a non-core cluster. The documents that belong to a core query cluster can be seen as pseudo-relevant documents, and the documents that belong to a non-core cluster can be seen as pseudo non-relevant documents. Each cluster is represented as a graph which has nodes and edges. Each node represents a term and each edge represents proximity between the term and a query term. The term weight is calculated by subtracting the term weight in the non-core cluster graph from the term weight in the core cluster graph. It means that a term with a high weight in a non-core cluster graph should not be considered as an expanded term. Expansion terms are selected according to the term weights. Experimental results on TREC WT10g test collection show that the proposed method achieves 9.4% improvement over the language model in mean average precision.

A study on vocabularies related to four fundamental rules of arithmetic used in elementary school mathematics (초등학교 수학에서 사용하는 사칙계산 관련 어휘에 관한 연구)

  • Park, Kyo Sik
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.17 no.2
    • /
    • pp.185-205
    • /
    • 2013
  • In this study, to begin with, it was discussed to gather vocabularies which are expected to be vocabularies related to four fundamental rules of arithmetic and classify them according to kinds and groups, to demarcate vocabularies related to four fundamental rules of arithmetic for using in elementary school mathematics which are associated with addition, subtraction, multiplication, and division directly. Next, the basic vocabularies related to four fundamental rules of arithmetic were discussed. At this time, regarding vocabularies related addition, subtraction, multiplication, and division as coming from the verb add, subtract, multiply, divide respectively, vocabularies that contains the stem of each verb were considered as the basic vocabularies related to four fundamental rules of arithmetics. Following it, vocabularies which assist the operation and indicate the result of the operation were included, then, vocabularies related to four fundamental rules of arithmetic for using in elementary school mathematics were demarcated and presented according to the following criteria. First, a newly coined verb or derivative using the noun form of a certain verb as a root should not be used. Second, such vocabularies of which examples do not exist or rarely exist in textbooks/workbooks should not be used, even though they are registered in mathematics glossary book published by ministry of education or Korean dictionary published by the national institute of Korean language. Third, vocabularies which are not replaceable and vocabularies which have some didactical reasons for using them should be used.

  • PDF

Study on the parts-of-speech in Korean (한국어 품사 분류에 대한 제안)

  • 서민정
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2002.05a
    • /
    • pp.76-81
    • /
    • 2002
  • 인터넷의 발달 등으로 많은 정보들이 문서화되기도 하고 그런 정보들이 공유되고 있는 지금, 언어학이나 전산학의 요구를 함께 충족시킬 수 있는 문법 모델 개발의 필요성이 극대화되고 있다. 이 글은 한국어 품사 분류에 대해서 국어학과 전산학에서의 처리 방법과 결과를 검토하고 정리하여 우리말의 특성을 잘 설명하면서도 국어를 전산 처리하는데도 도움을 줄 수 있는 품사분류를 제안하는데 그 목적이 있다. 한국어의 특성을 고려하여 음운, 형태, 통 어, 의미 정보를 함께 처리할 수 있는 어휘부 중심의 문법인 HPSG의 모형을 도입하여 한국어 품사 분류를 정보 전달에 기반을 두어 자질 체계와 통합 연산을 핵심으로 기술하려고 한다. 문법기술은 주로 자질 구조를 속성과 값의 행렬인 AVM(attribute-value matrices)으로 제시할 것이다.

  • PDF

Using Naïve Bayes Classifier and Confusion Matrix Spelling Correction in OCR (나이브 베이즈 분류기와 혼동 행렬을 이용한 OCR에서의 철자 교정)

  • Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Kim, Jae-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.310-312
    • /
    • 2016
  • OCR(Optical Character Recognition)의 오류를 줄이기 위해 본 논문에서는 교정 어휘 쌍의 혼동 행렬(confusion matrix)과 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier)를 이용한 철자 교정 시스템을 제안한다. 본 시스템에서는 철자 오류 중 한글에 대한 철자 오류만을 교정하였다. 실험에 사용된 말뭉치는 한국어 원시 말뭉치와 OCR 출력 말뭉치, OCR 정답 말뭉치이다. 한국어 원시 말뭉치로부터 자소 단위의 언어모델(language model)과 교정 후보 검색을 위한 접두사 말뭉치를 구축했고, OCR 출력 말뭉치와 OCR 정답 말뭉치로부터 교정 어휘 쌍을 추출하고, 자소 단위로 분해하여 혼동 행렬을 만들고, 이를 이용하여 오류 모델(error model)을 구축했다. 접두사 말뭉치를 이용해서 교정 후보를 찾고 나이브 베이즈 분류기를 통해 확률이 높은 교정 후보 n개를 제시하였다. 후보 n개 내에 정답 어절이 있다면 교정을 성공하였다고 판단했고, 그 결과 약 97.73%의 인식률을 가지는 OCR에서, 3개의 교정 후보를 제시하였을 때, 약 0.28% 향상된 98.01%의 인식률을 보였다. 이는 한글에 대한 오류를 교정했을 때이며, 향후 특수 문자와 숫자 등을 복합적으로 처리하여 교정을 시도한다면 더 나은 결과를 보여줄 것이라 기대한다.

  • PDF

Analysis of filtering performance of Korean and English spam-mails (한국어와 영어 스팸메일의 필터링 성능 분석)

  • Hwang Wun-Ho;Kang Sin-Jae;Kim Tae-Hee;Kim Hee-Jae;Kim Jong-Wan
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2006.05a
    • /
    • pp.389-396
    • /
    • 2006
  • 본 연구에서는 한국어와 영어 메일을 대상으로 2단계 스팸 메일 필터링 시스템을 구축하여 성능평가를 수행한다. 2단계 스팸 메일 필터링 시스템은 블랙리스트를 활용하는 1단계와 기계학습을 통한 지능적인 분류를 하는 2단계로 구성된다. 만약 새로 도착한 메일이 블랙리스트의 내용을 포함한다면 이 메일은 스팸 메일로 분류되고 그렇지 않은 메일은 2단계로 넘어가서 스팸 메일 여부를 판단하게 된다. 메일의 본문이 영어로 작성된 영어 스팸 메일을 일반 메일로부터 분류해내기 위해서는 우선 Stemming과 Stopping 기법을 이용하여 본문에서 정형화된 어휘정보들을 추출한다. 추출된 어휘정보들을 대상으로 속성벡터를 구축한 후 SVM 기계 학습을 시켜 SVM 분류기를 생성하여 지능적인 스팸 메일 필터링을 수행한다. 속성벡터를 구축할 때 기준이 되는 자질을 어떻게 선택하느냐에 따라 스팸 메일 필터링 시스템의 성능이 좌우된다. 따라서 SYM 기계 학습을 위한 속성벡터를 구축할 때 기준이 되는 자질을 선택하는 여러 알고리즘들을 적용하여 성능을 비교 분석한다. 그리고 한국어 스팸 메일 필터링 시스템과 비교하여 영어 스팸 메일 필터링 시스템의 전체적인 성능을 비교 분석한다.

  • PDF

Using Naïve Bayes Classifier and Confusion Matrix Spelling Correction in OCR (나이브 베이즈 분류기와 혼동 행렬을 이용한 OCR에서의 철자 교정)

  • Noh, Kyung-Mok;Kim, Chang-Hyun;Cheon, Min-Ah;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.310-312
    • /
    • 2016
  • OCR(Optical Character Recognition)의 오류를 줄이기 위해 본 논문에서는 교정 어휘 쌍의 혼동 행렬(confusion matrix)과 나이브 베이즈 분류기($na{\ddot{i}}ve$ Bayes classifier)를 이용한 철자 교정 시스템을 제안한다. 본 시스템에서는 철자 오류 중 한글에 대한 철자 오류만을 교정하였다. 실험에 사용된 말뭉치는 한국어 원시 말뭉치와 OCR 출력 말뭉치, OCR 정답 말뭉치이다. 한국어 원시 말뭉치로부터 자소 단위의 언어 모델(language model)과 교정 후보 검색을 위한 접두사 말뭉치를 구축했고, OCR 출력 말뭉치와 OCR 정답 말뭉치로부터 교정 어휘 쌍을 추출하고, 자소 단위로 분해하여 혼동 행렬을 만들고, 이를 이용하여 오류 모델(error model)을 구축했다. 접두사 말뭉치를 이용해서 교정 후보를 찾고 나이브 베이즈 분류기를 통해 확률이 높은 교정 후보 n개를 제시하였다. 후보 n개 내에 정답 어절이 있다면 교정을 성공하였다고 판단했고, 그 결과 약 97.73%의 인식률을 가지는 OCR에서, 3개의 교정 후보를 제시하였을 때, 약 0.28% 향상된 98.01%의 인식률을 보였다. 이는 한글에 대한 오류를 교정했을 때이며, 향후 특수 문자와 숫자 등을 복합적으로 처리하여 교정을 시도한다면 더 나은 결과를 보여줄 것이라 기대한다.

  • PDF