Annual Conference on Human and Language Technology
/
1999.10e
/
pp.389-396
/
1999
본 연구에서는 이미 만들어진 양국어 단일 언어 어휘 분류체계를 이용하여 양국어 어휘 분류등급 간의 개념유사도에 의한 양국어 분류체계간의 연관 관계를 구축하고자 한다. 중국어 유의어사전과 한국어 분류어휘표를 이용하여 양국어 어휘 분류체계에서의 분류등급 간의 개념유사성 및 양국어간의 어휘 유사성에 의하여 어휘분류망을 자동 구축한다. 자동 구축된 어휘분류망을 통하여 한국어 분류어휘표의 어휘 구성 및 분류체계에 대한 분석 평가를 진행할 것이며 나아가 한국어 분류어휘표에 대한 어휘 및 분류체계에 대한 보완을 시도하고자 한다. 본 연구는 한국어 자체 어휘 분류체계의 구축 방법론의 연구에도 어느 정도 도움될 것으로 기대한다.
Social Network Services(SNS) such as Twitter, Facebook and Myspace have gained popularity worldwide. Especially, sentiment analysis of SNS users' sentence is very important since it is very useful in the opinion mining. In this paper, we propose a new sentiment classification method of sentences which contains formal and informal vocabulary such as emoticons, and newly coined words. Previous methods used only formal vocabulary to classify sentiments of sentences. However, these methods are not quite effective because internet users use sentences that contain informal vocabulary. In addition, we construct suggest to construct domain sentiment vocabulary because the same word may represent different sentiments in different domains. Feature vectors are extracted from the sentiment vocabulary information and classified by Support Vector Machine(SVM). Our proposed method shows good performance in classification accuracy.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.265-271
/
2019
본 논문은 어휘가 비슷한 문장들을 효과적으로 분류하는 BERT 기반 유사 문장 분류기의 학습 자료 구성 방법을 제안한다. 기존의 유사 문장 분류기는 문장의 의미와 상관 없이 각 문장에서 출현한 어휘의 유사도를 기준으로 분류하였다. 이는 학습 자료 내의 유사 문장 쌍들이 유사하지 않은 문장 쌍들보다 어휘 유사도가 높기 때문이다. 따라서, 본 논문은 어휘 유사도가 높은 유사 의미 문장 쌍들과 어휘 유사도가 높지 않은 의미 문장 쌍들을 학습 자료에 추가하여 BERT 유사 문장 분류기를 학습하여 전체 분류 성능을 크게 향상시켰다. 이는 문장의 의미를 결정짓는 단어들과 그렇지 않은 단어들을 유사 문장 분류기가 학습하였기 때문이다. 제안하는 학습 데이터 구축 방법을 기반으로 학습된 BERT 유사 문장 분류기들의 학습된 self-attention weight들을 비교 분석하여 BERT 내부에서 어떤 변화가 발생하였는지 확인하였다.
Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.37-39
/
2001
현재 이용가능한 대부분의 자동문서분류 시스템의 가장 큰 문제는 문서에 포함된 단어 사이의 통사 정보는 무시한 채, 각 단어의 분포만 고려한다는 점이다. 하지만, 통사 정보도 문서 분류를 위해 매우 중요한 정보 중의 하나이다. 본 논문에서는 문서에 나타난 어휘 정보와 함께 통사 정보를 함께 고려하는 자동문서분류 방법을 제시한다. Reuters-21578 말뭉치에 대한 문서분류 실험결과 제시된 방법은 어휘정보만 사용하는 방법과 통사정보만 사용하는 방법 모두보다 높은 성능을 보인다 이 말뭉치에 대해서, 어휘정보만으로 학습된 Support Vector Machine으로 약 77%의 매우 높은 정확도를 얻을 수 있음에도 약 0.63%의 추가적인 성능 향상이 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2010.04a
/
pp.443-446
/
2010
질의 분류에서 어휘의 다양한 표현으로 인한 어휘 불일치문제는 성능저하의 주요 원인이다. 본 논문에서는 야후!앤써 질의응답 아카이브를 이용해서 같은 카테고리의 질의-질의쌍들에 대해 어휘-어휘 번역확률을 계산하는 방법을 제안한다. 정보검색에서 우수한 성능을 보인 어휘 사이의 번역확률을 반영하는 번역기반 언어모델이 질의 분류에서 유효함을 확인하였고 언어모델과의 비교실험을 통해 성능향상을 보였다. 어휘관계를 측정하는 방법에서 번역확률 계산방법에 따른 성능측정에서 전체 질의-대답쌍들에 대해 번역확률을 계산하는 것보다 같은 카테고리에 속하는 질의-질의쌍들에 대해 번역확률을 계산하는 것이 분류를 위해 더 좋은 번역확률임을 확인하였다.
Word mismatch is the most significant problem that causes low performance in question classification, whose questions consist of only two or three words that expressed in many different ways. So, it is necessary to apply word association in question classification. In this paper, we propose question classification method using translation-based language model, which use word translation probabilities for question-question pair that is learned in the same category. In the experiment, we prove that translation probabilities of question-question pairs in the same category is more effective than question-answer pairs in total collection.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.169-172
/
2000
본 연구에서는 청각장애인용 통신보조기기에 적용하기 위한 어휘예측 시스템의 기본구조를 제안한다. 통신보조기기의 어휘는 사용자의 환경을 고려한 어휘이므로, 어휘 예측 시스템도 사용자의 환경과 실생활에서 쉽게 이용할 수 있는 방향으로 고안되어야 한다. 따라서 어휘예측 시스템은 사용자의 환경을 정의하고, 중심어휘와 장소별 도메인에서의 어휘를 발췌한다. 발췌된 어휘는 말뭉치와 의미함축의 원리를 이용하여 분류한다. 분류된 어휘는 문법적 지식을 바탕으로 가상 네트워크를 구성한다. 가상네트워크에서의 어휘는 명사, 조사, 동사의 3부분으로 나눈 후 의미함축과 말뭉치로부터 파생된 어휘를 근접한 거리에 위치시킨다. 동일한 네트워크상에서 어휘의 위치는 문법적 연관성, 빈도수 등을 이용하여 정한다. 따라서 본 연구에서는 어휘예측은 명사, 조사, 동사에서 가장 근접한 어휘를 연결하여 간단한 문장을 작성할 수 있는 어휘 예측 시스템의 기본구조를 제안한다.
Proceedings of the Korean Society of Computer Information Conference
/
2015.01a
/
pp.11-14
/
2015
많은 블로그 제공 사이트는 블로그 포스트 작성자에게 미리 정의된 범주 (category)에 따라 포스트의 주제에 대하여 범주를 선택할 수 있는 환경을 제공한다. 그러나 블로거들은 작성한 포스트의 범주를 매번 수동으로 선택해야 하는 불편함이 있다. 이러한 불편함의 해결을 위해 블로그 포스트를 자동으로 분류해주는 기능을 제공한다면 블로그의 활용성이 증가할 것이다. 기존의 블로그 문서 분류의 연구는 각 범주의 고유 정보를 반영하는 것에 한계가 있었다. 이러한 문제를 해결하기 위해, 본 논문에서는 범주별 고유 정보를 반영한 어휘 가중치를 제안한다. 어휘 가중치의 분석을 위하여 범주별로 블로그 문서를 수집하고, 수집한 문서에서 어휘의 빈도와 문서의 빈도, 범주별 어휘빈도 등을 고려하여 새로운 지표인 CTF, CDF, IECDF를 개발하였다. 이러한 지표를 기반으로 기존의 Naive Bayes 알고리즘으로 학습하여, 블로그 포스트를 자동으로 분류하였다. 실험에서는 본 논문에서 제안한 가중치 방법인 TF-CTF-CDF-IECDF를 사용한 분류가 가장 높은 성능을 보였다.
Journal of Advanced Marine Engineering and Technology
/
v.39
no.1
/
pp.58-62
/
2015
Most blog sites provide predefined classes based on contents or topics, but few bloggers choose classes for their posts because of its cumbersome manual process. This paper proposes an automatic blog post classification method that variously combines term frequency, document frequency and class frequency from each classes to find appropriate weighting scheme. In experiment, combination of term frequency, category term frequency and inversed (excepted category's) document frequency shows 77.02% classification precisions.
Proceedings of the Korea Contents Association Conference
/
2003.11a
/
pp.185-189
/
2003
고성능의 질의 응답 시스템을 구현하기 위해서는 질의 유형 분류기의 성능이 중요하다. 본 논문에서는 복잡한 분류규칙이나 대용량의 사전 정보를 이용하지 않고 질의문에서 의문사에 해당하는 어휘들을 이용하여 질의 유형을 결정하고, 의문사 주변에 출현하는 명사들의 의미 정보를 이용하여 세부적인 정답유형을 결정할 수 있는 질의 유형분류기를 제안한다. 의문사에 해당하는 어휘가 생략된 경우는 질의문의 마지막 어절의 의미 정보를 이용하여 질의유형을 분류한다. 의문사 주변의 명사들이 마지막 어절에 출현하는 명사들에 대해 동의어 정보와 접미사 정보를 이용하여 질의 유형 분류의 성능을 향상시킨다. 본 논문에서 제안한 시스템은 질의 유형에 대한 분류는 97.4%의 정확도를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.