• Title/Summary/Keyword: 어플리케이터

Search Result 17, Processing Time 0.025 seconds

Development of Source Template ICRT Dose Planning Software for Uterine Cervix Using the HDR: $^{192}Ir$ (강내조사를 위한 고선량률 근접조사 선원맞춤형 선량계획)

  • Choi, Tae-Jin;Oh, Young-Kee;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.112-118
    • /
    • 2009
  • The source position and source dwelling time in a given source arrangement in the applicators is very high effect to determine the expose time which in general is derived from the brachytherapy planning system. In high dose rate (HDR) intracavitary radiation therapy (ICRT), the treatment is often performed in based out-patient during the whole fractionation irradiations. However, the patient should be waited on coutch for ICR treatment in first start fraction as unconvinent and immobilized state until perform the dose plannings. In our experiments, the HDR source contributed dose for$55.89{\pm}4.20%$ for straight tandem source, $38.14{\pm}4.46%$ for the right ovoid soucre on the fornix and$5.97{\pm}0.50%$ for left ovoid source. It also showed the $60.33{\pm}6.53%$ for the tandem, $33.10{\pm}6.74%$ for right ovoid and $6.58{\pm}0.30%$ for the left ovoid source in 10 degrees of applicator. The authors designed the source template dose planning software for ICRT of uterine cervix results average $-0.55{\pm}2.15%$ discrepancy of the full charged brachytherapy dose planning. Developed Source temperate ICRT plaanning software guide a minimized the complains and operating times within a ${\pm}3%$ of dose discrepancies.

  • PDF

The study on the scattering ratio at the edge of the block according to the increasing block thickness in electron therapy (전자선 치료 시 차폐블록 두께 변화에 따른 블록 주변 선량에 관한 연구)

  • Park, Zi On;Gwak, Geun Tak;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Kim, Jung Soo;Kwon, Hyoung Cheol;Lee, Sun Young
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.57-65
    • /
    • 2019
  • Purpose: The purpose is to clarify the effect of additional scattering ratio on the edge of the block according to the increasing block thickness with low melting point lead alloy and pure lead in electron beam therapy. Methods and materials: $10{\times}10cm^2$ Shielding blocks made of low melting point lead alloy and pure lead were fabricated to shield mold frame half of applicator. Block thickness was 3, 5, 10, 15, 20 (mm) for each material. The common irradiation conditions were set at 6 MeV energy, 300 MU / Min dose rate, gantry angle of $0^{\circ}$, and dose of 100 MU. The relative scattering ratio with increasing block thickness was measured with a parallel plate type ion chamber(Exradin P11) and phantom(RW3) by varying the position of the shielding block(cone and on the phantom), the position of the measuring point(surface ans depth of $D_{max}$), and the block material(lead alloy and pure lead). Results : When (depth of measurement / block position / block material) was (surface / applicator / pure lead), the relative value(scattering ratio) was 15.33 nC(+0.33 %), 15.28 nC(0 %), 15.08 nC(-1.31 %), 15.05 nC(-1.51 %), 15.07 nC(-1.37 %) as the block thickness increased in order of 3, 5, 10, 15, 20 (mm) respectively. When it was (surface / applicator / alloy lead), the relative value(scattering ratio) was 15.19 nC(-0.59 %), 15.25 nC(-0.20 %), 15.15 nC(-0.85 %), 14.96 nC(-2.09 %), 15.15 nC(-0.85 %) respectively. When it was (surface / phantom / pure lead), the relative value(scattering ratio) was 15.62 nC(+2.23 %), 15.59 nC(+2.03 %), 15.53 nC(+1.67 %), 15.48 nC(+1.31 %), 15.34 nC(+0.39 %) respectively. When it was (surface / phantom / alloy lead), the relative value(scattering ratio) was 15.56 nC(+1.83 %), 15.55 nC(+1.77 %), 15.51 nC(+1.51 %), 15.42 nC(+0.92 %), 15.39 nC(+0.72 %) respectively. When it was (depth of $D_{max}$ / applicator / pure lead), the relative value(scattering ratio) was 16.70 nC(-10.87 %), 16.84 nC(-10.12 %), 16.72 nC(-10.78 %), 16.88 nC(-9.93 %), 16.90 nC(-9.82 %) respectively. When it was (depth of $D_{max}$ / applicator / alloy lead), the relative value(scattering ratio) was 16.83 nC(-10.19 %), 17.12 nC(-8.64 %), 16.89 nC(-9.87 %), 16.77 nC(-10.51 %), 16.52 nC(-11.85 %) respectively. When it was (depth of $D_{max}$ / phantom / pure lead), the relative value(scattering ratio) was 17.41 nC(-7.10 %), 17.45 nC(-6.88 %), 17.34 nC(-7.47 %), 17.42 nC(-7.04 %), 17.25 nC(-7.95 %) respectively. When it was (depth of $D_{max}$ / phantom / alloy lead), the relative value(scattering ratio) was 17.45 nC(-6.88 %), 17.44 nC(-6.94 %), 17.47 nC(-6.78 %), 17.43 nC(-6.99 %), 17.35 nC(-7.42 %) respectively. Conclusions: When performing electron therapy using a shielding block, the block position should be inserted applicator rather than the patient's body surface. The block thickness should be made to the minimum appropriate shielding thickness of each corresponding using energy. Also it is useful that the treatment should be performed considering the influence of scattering dose varying with distance from the edge of block.

A Study on the Effect of Field Shaping on Dose Distribution of Electron Beams (전자선의 선량분포에 있어서 Field Shaping의 효과에 관한 연구)

  • Kang, Wee-Saing;Cho, Moon-June
    • Radiation Oncology Journal
    • /
    • v.4 no.2
    • /
    • pp.165-172
    • /
    • 1986
  • In electron therapy, lead cutout or low-melting alloy block is used for shaping the field. Material for shaping electron field affects the output factor as wet 1 as the collimation system. The authors measured the output factors of electron beams for shaped fields from Clinac-18 using ionization chamber of Farmer type in polystyrene phantom. They analyzed the parameters that affect the output factors. The output factors of electron beams depend on the incident energy, collimation system and size of shaped field. For shaped field the variation of output factor for the field size (A/P) has appearence of a smooth curve for all energy and all applicator collimator combination. The output factors for open field deviate from the curves for shaped fields. An output factor for a given field can be calculated by equivalent field method such as A/P method, if a combination of applicator and collimator is fixed.

  • PDF

The Improvement of Characteristics of The Applicator Using Semi-rigid Coaxial Cable Antenna for RFA (반강체 동축케이블 안테나를 이용한 RFA용 어플리케이터의 특성 개선)

  • 강철준;박성교;김선호;박종백
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.24-27
    • /
    • 2003
  • Radiofrequency ablation (RFA) as one of the microwave hyperthermia is becoming the treatment of choice for small but inoperable tumors of the liver. In this paper, we designed the applicator composed of semi-rigid coaxial cable antenna with a ring slot for RFA. To optimize the maximum output of radiation with omni direction at 2450 ㎒, we simulated the applicator using Electromagnetic simulation program and analyzed the return loss and the electric field E$\_$tot/ at the near-field region between the simulation results and measurement results. As a result, we obtained the return loss of -29.786 dB at 2450 ㎒ when the applicator was placed between two blocks of a pig's liver, and the measurement results agreed with the simulation results well. Therefore, this applicator using semi-rigid coaxial cable antenna with a ring slot can be used very usefully as the applicator for RFA.

  • PDF

Development of Phantom for Evaluate the Suitability of Ir-192 HDR Source with Brachytherapy Tools (근접치료용 하나로 생산 Ir-192 선원의 임상기기 적합성평가용 팬톰개발)

  • Shin, Kyo Chul;Choi, Sang Gyu;Kim, Ki Hwan;Son, Kwang Jae;Jeong, Dong Hyeok;Kim, Jeung Kee
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.171-175
    • /
    • 2013
  • Applicator of various kind of number ten kinds is used to raise from efficiency of brachytherapy to maximum. The compatibility of radiation source and applicator is very important subject for safety brachytherapy. Developed high dose rate brachytherapy source through Hanaro nuclear reactor in Korea Atomic Energy Research Institute and improve compatibility with using equipment in present. In this research, we wished to evaluate stability mechanical safety of radiation source and we developed phantom for evaluate several quality about Ir-192 sealed source that improve newly in Korea Atomic Energy Research Institute and is improved. The result for suitability of Ir-192 HDR source with brachytherapy tools that did normal operation in 2.2~2.7 cm extent about change of equal curvature and consider change of sudden curvature that did normal operation in radius 1.5~1.8 cm extent.

Verification of Balloon Catheter for Rectal Dose Reduction in Brachytherapy (강내 방사선치료에 있어 직장선량 감소를 위한 풍선형 카테터의 검증)

  • To-Sol, Yu;Young-Min, Moon;Wan, Jeon;Chul-Won, Choi;Bae, Sang-Il;Jin-Young, Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.735-740
    • /
    • 2022
  • In order to reduce side effects such as rectal bleeding in the Brachytherapy, the rectal retractor and wet gauze have been used to increase the distance between the rectum and the tandem. However, there were disadvantages that it was difficult to insert through a narrow entrance into the vagina and poor reproducibility. Also, based on the CT image of the selected catheter, the distance from the tandem to the rectum with or without the balloon catheter was checked and the reduction of the dose to the rectum was confirmed. As a result of the experiment, catheter No. 7 was selected considering the maximum balloon size at a level that does not affect the distance between the start point of the balloon and the end of the catheter, and the ovoid applicator. Based on the CT image of the selected catheter, the degree of expansion according to the presence or absence of the balloon catheter was compared, and it was found that the distance difference was 0.3 - 1 cm. In addition, it was confirmed that a decrease of about 32% was observed due to this distance difference. Therefore, the actual clinical application of the selected catheter can be used as a substitute for the existing rectal retractor and wet gauze.

Calculation of Energy Spectra for 6 MeV Electron Beam of LINAC Using MCNPX (MCNPX를 이용한 선형가속기의 6 MeV 전자선에 대한 에너지분포 계산)

  • Lee, Jeong-Ok;Jeong, Dong-Hyeok
    • Progress in Medical Physics
    • /
    • v.17 no.4
    • /
    • pp.224-231
    • /
    • 2006
  • The electron energy spectra for 6 MeV electron beam were calculated using a MCNPX code. The head of the linear accelerator (ML6M; Mitsubishi, Japan) was modelled for this study. The energy spectrum of the initial electron beam was assumed to be Gaussian and the mean energy was determined by evaluating the measured and calculated values of $R_{50}$ and dose profiles in air. The energy distributions for electrons and photons at the interested points in the head of the linear accelerator were calculated by appling the Initial beam parameters. The effect of contaminant photons on depth dose curves were estimated by the photon energy spectra at the end of the applicator.

  • PDF

Applicator parts hub and cannula integrated mold technology and bonding strength analysis for retinal disease treatment (망막질환 치료를 위한 어플리케이터 허브와 캐뉼러 일체화 금형기술 및 접합강도 분석)

  • Jeong-Hyeon Yu;Yong-Dae Kim;Jeong-Won Lee
    • Design & Manufacturing
    • /
    • v.17 no.1
    • /
    • pp.40-47
    • /
    • 2023
  • Macular degeneration and glaucoma are representative age-related retinal diseases that rank second and third in the prevalence of retinal diseases, and are a kind of degenerative neurological disease. Irreversible visual acuity and visual field damage may occur, and the number of patients is rapidly increasing as the population ages. Since this retinal disease is a chronic disease, continuous drug treatment is required. There are various drug delivery methods for treatment, but direct injection of the drug into the intravitreal is the most effective for continuous delivery of the drug over a long period of time. In order to solidify Dexamethasone, a retinal disease treatment, and insert it into the primary intravitreal, it is important to develop a technology to miniaturize the treatment and an applicator to deliver the treatment. In this study, a mold technology was developed to integrate the cannula and hub, which are one part of applicator. In addition, surface treatment was performed on the outside of the cannula to improve the bonding strength between the cannula and the hub, and the bonding strength according to each condition was analyzed through a tensile test.

  • PDF

Preparation and Characterization of Porous Polycaprolactone Membrane for Tissue Engineering (조직공학용 다공성 Polycaprolactone 멤브레인의 제조 및 특성)

  • Kim, Jin-Tae;Kim, Tae-Hyung;Choi, Jae Ha
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.26-31
    • /
    • 2016
  • Polycaprolactone (PCL) has been fabricated into the membrane type scaffolds of 3 dimensional pore network for the tissue engineering applications by the blade method of salt (NaCl) leaching and solution casting. In this study, the experimental designs have each conditions of drying temperature, salt particle size, salt content. The modified dispensing pump connected up to homogenizing mixer system is used for mixing the $PCL/CHCl_3$ solution and NaCl particles. The membrane fabricated use by the film applicator to poured mixed solution on the glass plate. The great pore by NaCl particles and the small pore by the evaporated $CHCl_3$ in the frame wall of great pores are multiply formed in membrane scaffolds.