• Title/Summary/Keyword: 어프로치블럭

Search Result 3, Processing Time 0.015 seconds

Analysis of Design Parameters for Earthwork/Bridge Transition Structure for Ultra-High Speed Running (초고속 주행시 교량/토공 접속부 보강방안의 설계변수 분석)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Lee, Kang-Myung
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.117-126
    • /
    • 2015
  • The development of railway roadbed for 600km/h train speed level is very difficult because unpredictable static and dynamic interaction occurs between the ultra-high speed train and the infrastructure. Especially, an earthwork-bridge transition zone is a section in which influential factors react, such as bearing capacity, compression, settlement, drainage, and track irregularity; these interactions can include complicated dynamic interaction. Therefore, if static and dynamic stability are secured in transition zones, it is possible to develop roadbeds for ultra-high speed railways. In the present paper, design parameters for transition reinforcement applied to present railway design criteria are analytically examined for ultra-high speed usage on a preferential basis. Design parameters are the presence of reinforcing materials, geometric shape, stiffness of materials, and so on. Analysis is focused on the deformation response of the track and running stability at ultra-high speed.

Evaluation of Deformation Characteristics for Bridge/Earthwork Transition Reinforcement Methods Considering Moving Load (이동하중을 고려한 교량/토공 접속부 보강방안별 변형특성 평가)

  • Lee, Il-Wha;Lee, Sung-Jin;Lee, Su-Hyung;Kang, Tae-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.298-303
    • /
    • 2010
  • The transition zone of the railway is the section which roadbed stiffness is suddenly varied like as tunnel-earthwork, bridge-earthwork and concrete track-ballasted track. There are about 450 tunnel-bridge transition sections on Kyungbu high-speed railway line. It is very important to pay careful attention to construction of these transition zones, in order to secure the train running safety. So, we developed a finite element model of the moving wheel loading to simulate the behavior of bridge-earthwork transitions in this paper. The most distinctive characteristics of the model proposed is to simulate the real wheel behavior on rail. And the main analysis object is to evaluate and compare the deformation characteristics of the transition zone according to the reinforcement methods and length of transition zone which is adopted to high-speed railway. Based on the analysis results, we assessed the effect of the reinforcements on the transition zone of high-speed railway.

Real-scale Accelerated Testing to Evaluate Long-term Performance for Bridge/Earthwork Transition Structure Reinforced by Geosynthetics and Cement Treated Materials (토목섬유와 시멘트처리채움재로 보강한 교량/토공 접속구조의 장기공용성 평가를 위한 실물가속시험)

  • Lee, Il-Wha;Choi, Won-Il;Cho, Kook-Hwan;Lee, Kang-Myung;Min, Kyung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.251-259
    • /
    • 2014
  • The transition zone between an earthwork and a bridge effect to the vehicle's running stability because support stiffness of the roadbed is suddenly changed. The design criteria for the transition structure on ballast track were not particular in the past. However with the introduction of concrete track is introduced, it requires there is a higher performance level required because of maintenance and running stability. In this present paper, a transition structure reinforced with geosynthetics is suggested to improve the performance of existing bridge-earthwork transition structures. The suggested transition structure, in which there is reinforcing of the approach block using high-tension geosynthetics, has a structure similar to that of earth reinforced abutments. The utilized backfill materials are cement treated soil and gravel. These materials are used to reduce water intrusion into the approach block and to increase the recycling of surplus earth materials. An experiment was performed under the same conditions in order to allow a comparison of this new structure with the existing transition structure. Evaluation items are elastic displacement, cumulative settlement, and earth pressure. As for the results of the real-scale accelerated testing, the suggested transition structure has excellent performance for the reduction of earth pressure and settlement. Above all, it has high resistance the variation of the water content.