• Title/Summary/Keyword: 어텐션 모델

Search Result 85, Processing Time 0.028 seconds

S2-Net: Korean Machine Reading Comprehension with SRU-based Self-matching Network (S2-Net: SRU 기반 Self-matching Network를 이용한 한국어 기계 독해)

  • Park, Cheoneum;Lee, Changki;Hong, Sulyn;Hwang, Yigyu;Yoo, Taejoon;Kim, Hyunki
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.35-40
    • /
    • 2017
  • 기계 독해(Machine reading comprehension)는 주어진 문맥을 이해하고, 질문에 적합한 답을 문맥 내에서 찾는 문제이다. Simple Recurrent Unit (SRU)은 Gated Recurrent Unit (GRU)등과 같이 neural gate를 이용하여 Recurrent Neural Network (RNN)에서 발생하는 vanishing gradient problem을 해결하고, gate 입력에서 이전 hidden state를 제거하여 GRU보다 속도를 향상시킨 모델이며, Self-matching Network는 R-Net 모델에서 사용된 것으로, 자기 자신의 RNN sequence에 대하여 어텐션 가중치 (attention weight)를 계산하여 비슷한 의미 문맥 정보를 볼 수 있기 때문에 상호참조해결과 유사한 효과를 볼 수 있다. 본 논문에서는 한국어 기계 독해 데이터 셋을 구축하고, 여러 층의 SRU를 이용한 Encoder에 Self-matching layer를 추가한 $S^2$-Net 모델을 제안한다. 실험 결과, 본 논문에서 제안한 $S^2$-Net 모델이 한국어 기계 독해 데이터 셋에서 EM 65.84%, F1 78.98%의 성능을 보였다.

  • PDF

Explainable Fact Checking Model Based on Efficient Transformer (효율적인 트랜스포머에 기반한 설명 가능한 팩트체크 모델)

  • Yun, Heeseung;Jung, Jason J.;Lee, Gunju;Jung, Dahee;Kim, Kono
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.19-21
    • /
    • 2021
  • In this paper, we introduce the model so-called Explainable Fact-Checking model based on attention mechanism which shows both the result of fact check of the news and the evidence of verdict. Recently, several news surge on media, so fact check attracts much attentions. However, in present fact check relies on the search made by journalists and members of fact check orgainzation, so there is some researchs about automated fact checking. Therefore in this paper we propose explainable automated fact checking model.

  • PDF

Mitigiating Data Imbalance via Ensembled Data Augmentation: An Explainable Credit Scoring Models (데이터 증강 기법의 앙상블을 통한 레이블 불균형 해 소: 설명 가능한 신용평가 모델을 중심으로)

  • Ji-Young Chung;So-Yeon Lee;Ye-Lin Yong;Min-Jun Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.483-486
    • /
    • 2023
  • 최근 금융 분야는 예측 모델의 복잡성으로 인한 블랙박스 문제와 금융 규제에 대한 관심이 높아지고 있다. 이에 따라 금융 업계는 신뢰성과 투명성을 강조하며, 특히 신용평가 분야에서 설명 가능한 모델 연구가 활발히 진행되고 있다. 또한, 해당 분야에서 소수 클래스에 대해 충분히 학습하지 못하고 다수 클래스에 과적합 될 수 있는 데이터 불균형 문제 역시 강조되고 있다. 이는 제 2종 오류(Type 2 Error)를 최소화해야 하는 상황에서 더욱 부각되며, 대출 상환 능력이 낮은 고객을 최대한 식별해야 하는 개인 신용평가 문제에서 매우 중요한 화두로 떠오르고 있다. 본 논문에서는 어텐션 메커니즘을 활용하여 모델의 설명 가능성을 개선하고, 분석 결과를 해석하는 데 도움이 되고자 한다. 더 나아가, SMOTE, GAN, ADASYN 등 총 다섯 가지 데이터 증강 기법을 실험하여, 이를 앙상블 하였을 때 소수 클래스 레이블에 대한 분류 정확도를 크게 개선할 수 있음을 확인하였다.

Non-autoregressive Multi Decoders for Korean Morphological Analysis (비자동회귀 다중 디코더 기반 한국어 형태소 분석)

  • Seongmin Cho;Hyun-Je Song
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.418-423
    • /
    • 2022
  • 한국어 형태소 분석은 자연어 처리의 기초가 되는 태스크이므로 빠르게 결과를 출력해야 한다. 기존연구는 자동회귀 모델을 한국어 형태소 분석에 적용하여 좋은 성능을 기록하였다. 하지만 자동회귀 모델은 느리다는 단점이 있고, 이 문제를 극복하기 위해 비자동회귀 모델을 사용할 수 있다. 비자동회귀 모델을 한국어 형태소 분석에 적용하면 조화롭지 않은 시퀀스 문제와 토큰 반복 문제가 발생한다. 본 논문에서는 두 문제를 해결하기 위하여 다중 디코더 기반의 한국어 형태소 분석을 제안한다. 조화롭지 않은 시퀀스는 다중 디코더를 적용함으로써, 토큰 반복 문제는 두 개의 디코더에 서로 어텐션을 적용하여 문제를 완화할 수 있다. 본 논문에서 제안한 모델은 세종 형태소 분석 말뭉치를 대상으로 좋은 성능을 확보하면서 빠르게 결과를 생성할 수 있음을 실험적으로 보였다.

  • PDF

Neural Question Difficulty Estimator with Bi-directional Attention in VideoQA (비디오 질의 응답 환경에서 양방향 어텐션을 이용한 질의 난이도 분석 모델)

  • Yoon, Su-Hwan;Park, Seong-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.501-506
    • /
    • 2020
  • 질의 난이도 분석 문제는 자연어 질의문을 답변할 때 어려움의 정도를 측정하는 문제이다. 질의 난이도 분석 문제는 문서 독해, 의학 시험, 비디오 질의 등과 같은 다양한 데이터셋에서 연구되어 왔다. 본 논문에서는 질의문과 질의문에 응답하기 위한 정보들 간의 관계를 파악하는 것으로 질의 난이도 분석 문제를 접근하여 이를 BERT와 Dual Multi-head Attention을 사용하여 모델링 하였다. 본 논문에서 제안하는 모델의 우수성을 증명하기 위하여 최근 자연언어이해 부분에서 높은 성능을 보여주는 기 학습 언어 모델과 이전 연구의 질의 난이도 분석 모델과의 성능을 비교하였고, 제안 모델은 대표적인 비디오 질의 응답 데이터셋인 DramaQA의 Memory Complexity에서 99.76%, Logical Complexity에서는 89.47%의 정확도로 가장 높은 질의 난이도 분석 성능을 보여주었다.

  • PDF

A medium-range streamflow forecasting approach over South Korea using Double-encoder-based transformer model (다중 인코더 기반의 트랜스포머 모델을 활용한 한반도 대규모 유역에 중장기 유출량 예측 전망 방법 제시)

  • Dong Gi Lee;Sung-Hyun Yoon;Kuk-Hyun Ahn
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.101-101
    • /
    • 2023
  • 지난 수십 년 동안 다양한 딥러닝 방법이 개발되고 있으며 수문 분야에서는 이러한 딥러닝 모형이 기존의 수문모형의 역할을 대체하여 사용할 수 있다는 가능성이 제시되고 있다. 본 연구에서는 딥러닝 모형 중에 트랜스포머 모형에 다중 인코더를 사용하여 중장기 기간 (1 ~ 10일)의 리드 타임에 대한 한국의 유출량 예측 전망의 가능성을 확인하고자 하였다. 트랜스포머 모형은 인코더와 디코더 구조로 구성되어 있으며 어텐션 (attention) 기법을 사용하여 기존 모형의 정보를 손실하는 단점을 보완한 모형이다. 본 연구에서 사용된 다중 인코더 기반의 트랜스포머 모델은 트랜스포머의 인코더와 디코더 구조에서 인코더를 하나 더 추가한 모형이다. 그리고 결과 비교를 위해 기존에 수문모형을 활용한 스태킹 앙상블 모형 (Stacking ensemble model) 기반의 예측모형을 추가로 구축하였다. 구축된 모형들은 남한 전체를 총 469개의 대규모 격자로 나누어 각 격자의 유출량을 비교하여 평가하였다. 결과적으로 수문모형보다 딥러닝 모형인 다중 인코더 기반의 트랜스포머 모형이 더 긴 리드 타임에서 높은 성능을 나타냈으며 이를 통해 수문모형의 역할을 딥러닝 모형이 어느 정도는 대신할 수 있고 높은 성능을 가질 수 있는 것을 확인하였다.

  • PDF

Attention Modules for Improving Cough Detection Performance based on Mel-Spectrogram (사전 학습된 딥러닝 모델의 Mel-Spectrogram 기반 기침 탐지를 위한 Attention 기법에 따른 성능 분석)

  • Changjoon Park;Inki Kim;Beomjun Kim;Younghoon Jeon;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.43-46
    • /
    • 2023
  • 호흡기 관련 전염병의 주된 증상인 기침은 공기 중에 감염된 병원균을 퍼트리며 비감염자가 해당 병원균에 노출된 경우 높은 확률로 해당 전염병에 감염될 위험이 있다. 또한 사람들이 많이 모이는 공공장소 및 실내 공간에서의 기침 탐지 및 조치는 전염병의 대규모 유행을 예방할 수 있는 효율적인 방법이다. 따라서 본 논문에서는 탐지해야 하는 기침 소리 및 일상생활 속 발생할 수 있는 기침과 유사한 배경 소리 들을 Mel-Spectrogram으로 변환한 후 시각화된 특징을 CNN 모델에 학습시켜 기침 탐지를 진행하며, 일반적으로 사용되는 사전 학습된 CNN 모델에 제안된 Attention 모듈의 적용이 기침 탐지 성능 향상에 도움이 됨을 입증하였다.

  • PDF

TAP-GAN: Enhanced Trajectory Privacy Based on ACGAN with Attention Mechanism (TAP-GAN: 어텐션 메커니즘이 적용된 ACGAN 기반의 경로 프라이버시 강화)

  • Ji Hwan Shin;Ye Ji Song;Jin Hyun Ahn;Taewhi Lee;Dong-Hyuk Im
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.522-524
    • /
    • 2023
  • 위치 기반 서비스(LBS)의 확산으로 다양한 분야에서 활용할 수 있는 많은 양의 경로 데이터가 생성되고 있다. 하지만 공격자가 경로 데이터를 통해 잠재적으로 사용자의 개인정보를 유추할 수 있다는 문제점이 존재한다. 따라서 경로 데이터의 프라이버시를 보존하며 유용성을 유지할 수 있는 GAN(Generative Adversarial Network)을 사용한 많은 연구가 진행되고 있다. 그러나 GAN은 생성된 결과물을 제어하지 못한다는 한계점을 가지고 있다. 본 논문에서는 ACGAN(Auxiliary classifier GAN)을 통해 생성된 결과물을 제어함으로써 경로 데이터의 민감한 정점을 숨기고, Attention mechanism을 결합하여 높은 유용성과 익명성을 제공하는 합성 경로 생성 모델인 TAP-GAN(Trajectory attention and protection-GAN)을 제안한다. 또한 모델의 성능을 입증하기 위해 유용성 및 익명성 실험을 진행하고, 선행 연구 모델과의 비교를 통해 TAP-GAN이 경로 데이터의 유용성을 보장하면서 사용자의 프라이버시를 효과적으로 보호할 수 있음을 확인하였다.

Small Marker Detection with Attention Model in Robotic Applications (로봇시스템에서 작은 마커 인식을 하기 위한 사물 감지 어텐션 모델)

  • Kim, Minjae;Moon, Hyungpil
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.4
    • /
    • pp.425-430
    • /
    • 2022
  • As robots are considered one of the mainstream digital transformations, robots with machine vision becomes a main area of study providing the ability to check what robots watch and make decisions based on it. However, it is difficult to find a small object in the image mainly due to the flaw of the most of visual recognition networks. Because visual recognition networks are mostly convolution neural network which usually consider local features. So, we make a model considering not only local feature, but also global feature. In this paper, we propose a detection method of a small marker on the object using deep learning and an algorithm that considers global features by combining Transformer's self-attention technique with a convolutional neural network. We suggest a self-attention model with new definition of Query, Key and Value for model to learn global feature and simplified equation by getting rid of position vector and classification token which cause the model to be heavy and slow. Finally, we show that our model achieves higher mAP than state of the art model YOLOr.

Transformer and Spatial Pyramid Pooling based YOLO network for Object Detection (객체 검출을 위한 트랜스포머와 공간 피라미드 풀링 기반의 YOLO 네트워크)

  • Kwon, Oh-Jun;Jeong, Je-Chang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.113-116
    • /
    • 2021
  • 일반적으로 딥러닝 기반의 객체 검출(Object Detection)기법은 합성곱 신경망(Convolutional Neural Network, CNN)을 통해 입력된 영상의 특징(Feature)을 추출하여 이를 통해 객체 검출을 수행한다. 최근 자연어 처리 분야에서 획기적인 성능을 보인 트랜스포머(Transformer)가 영상 분류, 객체 검출과 같은 컴퓨터 비전 작업을 수행하는데 있어 경쟁력이 있음이 드러나고 있다. 본 논문에서는 YOLOv4-CSP의 CSP 블록을 개선한 one-stage 방식의 객체 검출 네트워크를 제안한다. 개선된 CSP 블록은 트랜스포머(Transformer)의 멀티 헤드 어텐션(Multi-Head Attention)과 CSP 형태의 공간 피라미드 풀링(Spatial Pyramid Pooling, SPP) 연산을 기반으로 네트워크의 Backbone과 Neck에서의 feature 학습을 돕는다. 본 실험은 MSCOCO test-dev2017 데이터 셋으로 평가하였으며 제안하는 네트워크는 YOLOv4-CSP의 경량화 모델인 YOLOv4s-mish에 대하여 평균 정밀도(Average Precision, AP)기준 2.7% 향상된 검출 정확도를 보인다.

  • PDF