• Title/Summary/Keyword: 어장 등급

Search Result 13, Processing Time 0.018 seconds

Classified Fishery Grade Using Analysis of Coastal Environmental Based on Object-Oriented Data Model (객체지향 데이터 모델에 기반한 해양환경 분석에 따른 어장 등급 분류)

  • Lee, Jae-Bong;Lee, Hong-Ro
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.1
    • /
    • pp.40-48
    • /
    • 2005
  • This paper will specify geo-objects and geo-fields of the geo-ecological contamination source and implement the system for evaluating an ocean Environmental contamination based on the spatial statistical analysis. In order to produce the grade of fishery that can evaluate the ocean effect, we will analysis the degree of the spatial correlation by semi-veriogram and predicate the elevation raster of spatial data using ordinary kriging method. This paper is to estimate the grade of fishery contamination region and produce the ratio of the area according to the fishery grade. Therefore, we can contribute to produce fishery grade that evaluates the ocean effect by means of deciding an efficient fishery environment.

  • PDF

Health Assessment of the Fish-cage Farms using BHI(Benthic Health Index) (저서동물지수를 활용한 어류가두리 양식장의 건강도 평가)

  • Park, Sohyun;Kim, Sunyoung;Park, Se-jin;Jung, Rae-Hong;Yoon, Sang-Pil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.735-745
    • /
    • 2022
  • In this study, a health assessment was conducted using the Benthic Health Index (BHI) to assess fish cage farms, where a fishery environment assessment was also performed. A total of 43 farms were evaluated located in the East Sea, West Sea, and South Sea in Korea. The results of the BHI health evaluation included 8 grade 1 farms, 4 grade 2, 12 grade 3, and 19 grade 4. The grade 1 farms included sandy sediment farms and those with low intensity aquaculture, while the grade 2 farms included those located in areas with active seawater circulation. The fish cage farms belonging to grade 3 and 4 included the majority of farms with high-intensity aquaculture activities. There was no significant difference in total organic carbon between grade 3 and 4 farms, but the results of polychaete community analysis show that organic matter concentration was significantly higher in grade 4 farms.

Procedure of the Ecological Index and Rating Calculation Methods for Fishery Environmental Assessment (어장환경평가의 평가지수 및 등급 산정 방법 소개)

  • Park, Sohyun;Kim, Sunyoung;Kim, Youn Jung;Hong, Sok-Jin;Jung, Rae Hong;Yoon, Sang-Pil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.835-842
    • /
    • 2022
  • Several countries are establishing management systems for aquaculture environment, and fishery environment assessment is one of them. The fishery management law amended in 2013 stipulates that a fishery environment assessment should be performed when a fish cage farm's license is extended. The purpose of the fishery environment assessment is to promote sustainable fishery, increase the fishery production capacity, and increase the fishermen incoming by implementing evaluation and improvement measures through scientific methods. The analysis items of fishery environment assessment include the Benthic Health Index (BHI), which is a biological index based on the macrobenthic polychaetes community, and total organic carbon (TOC), and the two items are scored and used for evaluation as a single grade. This study explains the selection process of BHI and TOC, which are evaluation items for fishing ground, and ecological significance of the calculated evaluation grades.

위성자료를 이용한 고등어 어장의 월별분포

  • Kim, Sang-U;O, Jun-Seok;Go, U-Jin;Jang, Lee-Hyeon;Seo, Yeong-Sang;Geleekko, Yamada;Im, Jin-Uk
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.285-288
    • /
    • 2007
  • 본 연구에서는 위성자료와 현장조사를 이용하여 통계적인 방법에 의해 고등어 어장의 월별 예상어장도를 작성하였다. 고등어에 대한 등급별 회귀직선방정식을 이용하여 계산된 각해구별 어획량과 현장조사 어획량과의 상관관계를 분석한 결과, A와 B등급 해역에서 추정된 어획량은 현장 조사된 어획량과 정량적인 차이는 있지만 상관관계가 상당히 높게 나타나는 것을 알 수 있었다.

  • PDF

Evaluation of Characteristics of Particle Composition and Pollution of Heavy Metals for Bottom Sediments in Cheonsu Bay, Korea -Comparison of the Sediments Environment of Farming Area and Non-farming Area (천수만 해저 퇴적물의 입도특성 및 중금속 오염도 평가 -어장해역과 비어장해역의 퇴적환경 비교-)

  • Kim, Jong-Gu;Jang, Hyo-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.358-371
    • /
    • 2014
  • For the systematic scientific management in Cheonsu Bay of Korea, this study was conducedt to survey the particle composition, organic matter(I.L.) and heavy metals in farming and non-farming areas. The sediment of study area showed feature mixed property by sand, silt and clay. The farming area showed superior by fine-grained sediment, non-farming area showed superior by coarse-grained sediment. The organic pollution of farming area were appeared to be heavily polluted more than non-farming area. The concentration of total nitorgen in sediment was higher farming area than non-farming area. Also, in the case of heavy metals pollution in sediments, farming area was higher than non-farming area. The correlation analysis among to heavy metals, organic matter and particle size was found to have a good interrelationship. For evaluation of heavy metals pollution of sediments, three criteria are applied, Enrichment Factor(EF), Geoaccumulation index(Igeo) and NOAA criteria for sediment. In the case of EF, Heavy metals pollution was appeared to artificial effect all heavy metals if except Cu. In the case of Geoaccumulation index, Cu, Al, Pb was shown zero grade, that is non polluted group, and Cd, Hg, Cr was shown to 0~1 grade, that is mid polluted group, As was shown to 2 grade, that is moderately polluted group. In the case of NOAA, pollution levels of heavy metals except Cd belonged to a group of ERL(Effect range low)~ERM(Effect range median).

Introduction to the Benthic Health Index Used in Fisheries Environment Assessment (어장환경평가에 사용하는 저서생태계 건강도지수(Benthic Health Index)에 대한 소개)

  • Rae Hong Jung;Sang-Pil Yoon;Sohyun Park;Sok-Jin Hong;Youn Jung Kim;Sunyoung Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.779-793
    • /
    • 2023
  • Intensive and long-term aquaculture activities in Korea have generated considerable amounts of organic matter, deteriorating the sedimentary environment and ecosystem. The Korean government enacted the Fishery Management Act to preserve and manage the environment of fish farms. Based on this, a fisheries environment assessment has been conducted on fish cage farms since 2014, necessitating the development of a scientific and objective evaluation method suitable for the domestic environment. Therefore, a benthic health index (BHI) was developed using the relationship between benthic polychaete communities and organic matter, a major source of pollution in fish farms. In this study, the development process and calculation method of the BHI have been introduced. The BHI was calculated by classifying 225 species of polychaetes appearing in domestic coastal and aquaculture areas into four groups by linking the concentration gradient of the total organic carbon in the sediment and the distributional characteristics of each species and assigning differential weights to each group. Using BHI, the benthic fauna communities were assigned to one of the four ecological classes (Grade 1: Normal, Grade 2: Slightly polluted, Grade 3: Moderately polluted, and Grade 4: Heavily polluted). The application of the developed index in the field enabled effective evaluation of the Korean environment, being relatively more accurate and less affected by the season compared with the existing evaluation methods like the diversity index or AZTI's Marine Biotic Index developed overseas. In addition, using BHI will be useful in the environmental management of fish farms, as the environment can be graded in quantified figures.

The Influence of Environmental Characteristics on the Fatness of Pacific Oyster, Crassostrea gigas, in Hansan-Koje Bay (한산${\cdot}$거제만의 환경특성이 양식 굴의 비만에 미치는 영향)

  • CHOI Woo-Jeung;CHUN Yong-Yull;PARK Jeung-Hum;PARK Yeong-Chull
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.794-803
    • /
    • 1997
  • Long line suspended culture of oysters has been started commercially in Hansan-Koje Bay since 1969. However, its Annual production has been decreased and culturing periods extended in recent years. So, we investigated environmental parameters and food organisms to identity the causes of poor fatness of oysters in Hansan-Koje Bay from February to November, 1994. As the result, the Water quality of Hansan-Koje Bay was found to be good for culture. For example, the mean concentration of COD was $1.35mg/\ell$, phosphate phosphorus was $0.30{\mu}g-at/\ell$ and dissolved inorganic nitrogen was $4.68{\mu}g-at/\ell$. However, the Hwado island and the inner part of the Hansan-Koje Bay were found to be eutrophicated due to various contaminants transported by land-based activities. But in the central pan of the Hansan-Koje Bay where the oyster farms Have been developed densely, the level of nutrient concentration was very low. During the study period, the dominant species of phytoplankton was Chaetoceros spp. with the percentage of $72.6\%\~87.8\%$ and the mean values of Chlorophyll-a concentration and phytoplankton standing crops were $2.05mg/m^3\;and\;188ind./m\ell$, respectively. The distribution of these parameters also showed similar trends those of nutrients. Especially, chlorophyll-a contents was very low with the concentration of below $0.5mg/m^3$ at central part of the Bay, Juklimpo. The fatness of oysters and the eutrophic index in this area were $18.1\%$ and 0.54, respectively. These values were lower than those of other culturing farms in the southern coastal areas in Korea. Therefore, we estimated that the insufficient food supply due to the low level of nutritional status was the major factors affecting the poor fatness of the Pacific oysters in Hansan-Koje Bay.

  • PDF

Assessment on the Mechanical-Chemical Stabilities of Coal Ash Blocks in Sea Water (석탄회 블록의 해양환경에서 역학적-화학적 안정성 평가)

  • Kim, Pil-Geun;Sung, Kyu-Youl;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.383-392
    • /
    • 2008
  • This study aims to evaluate the mechanical-chemical stability of used coal ash blocks, for improving fishing grounds. The surface of weathered ash blocks in seawater showed a decrease in the Ca and an increase in the Mg contents, compared to that of fresh blocks. This result reflects the substitution of Ca by Mg in seawater. The compressive strengths of ash blocks submerged into seawater during 12 months ranged from 235.23 to $447.43\;kgf/cm^2$; this is higher than the standard strength of wave-absorbing blocks($180\;kgf/cm^2)$ that are used for harbor construction. In addition, the compressive strength of ash blocks tends to increase with increasing installation time in seawater. The result of leaching experiments on coal ash blocks by Korean Standard Leaching Test(KSLT) method showed that leached concentrations of most metals except Cr(that leached up to 50 ppb, approaching standard concentration) do not exceed the seawater quality standards. A long-term(112 days) heavy metal leaching test to analyze seawater without mixing-dilution also showed that the concentrations of leached heavy metals, except for Cu, under anaerobic conditions do not exceed the seawater quality standards. Accordingly, the use of coal ash blocks in marine environments appears to be safe from chemical and mechanical factors that decrease the efficiency of concrete. Also, leaching concentration of Cu seems to be stable by decrease of leaching concentration due to dilution of seawater.

Ecological Evaluation Using Seaweed Distribution Characteristics along the Coast of Jeju Island (제주도 연안의 해조류 분포 특성을 이용한 생태학적 평가)

  • Sung-Hwan Cho;Young-Seok Noh;Seung-Hwan Won;Soo-Kang Kim;Sang-Mok Jung
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.6
    • /
    • pp.627-638
    • /
    • 2022
  • This study was conducted at a village fishing farm on 4 peaks on the main island of Jeju Island and 2 peaks on an inhabited island to compare the distribution characteristics of seaweeds along the coast of Jeju Island from May to December 2018. A total of 101 species of seaweeds were surveyed, including 13 species (12.9%) of green algae, 24 species (23.8%) of Phaeophyta, and 64 species (63.4%) of Rhodophyta. The largest number of seaweeds appeared in May and the fewest in October, showing typical features of a temperate sea area. The number of seaweed species that appeared was 66 and 65 species at the water depths of 5 m and 8 m, respectively, and the largest was 74 species at 12 m. The number of seaweeds that appeared by area was the largest at 66 species on Udo Island, an eastern island near Jeju Island, and the lowest at 27 species in Pyoseon-ri, an eastern part of Jeju Island. The important values of emerging species were high in the order of, Ecklonia cavaand Corallina crassissima at 21.1% and 20.3%, respectively, Corallina aberransat 9.2%, Amphora ephedraeaat 6.2%, and Sargassum macrocarpumat 4.4%. Among seaweeds, an average of 11.2 species of coralline algae appeared, and the mean importance value was 32.6% in the sear area. The lowest importance value was 14.7% on Udo Island, and the highest was 41.0% in Pyoseon-ri. The mean ecological evaluation index (EEI) of seaweed colonies ranged from 2.1 to 10. It was the lowest at the water depth of 12 m in Pyoseon-ri in May and June and was 7.3 or higher in other areas, indicating good condition. This study rated the standardized ecological grade I for the water depth of 12 m on Udo Island and grade II for the water depths of 5 m and 8 m in Sagye-ri and on Chujado Island. Grade III was the water depth of 5 m and 12 m in Pyoseon-ri and Guideok 2-ri and the water depth of 5 m and 8 m in Pyeongdae-ri, and grade IV was the water depth of 8 m in Guideok 2-ri.

The Physico-chemical Characteristics in the Garorim Bay, Korea (가로림만의 이화학적 수질의 시.공간적 특성)

  • Nam, Hyun-Jun;Heo, Seung;Park, Seung-Yun;Hwang, Un-Ki;Park, Jong-Soo;Lee, Hae-Kwang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.2
    • /
    • pp.101-114
    • /
    • 2012
  • The physico-chemical characteristics including water temperature, salinity, dissolved oxygen(DO), chemical oxygen demand (COD), chlorophyll-a(Chl. a), suspended particulate matter(SPM) and dissolved inorganic nutrients were investigated in the Garolim Bay, Yellow Sea, Korea in 2010 carried out six times per year at 11 fixed stations by Korea Fisheries Research & Development Institute. The water temperature, salinity, COD, dissolved inorganic nutrients, Chl. a and SPM showed significant difference between surface and bottom water but the other parameters didn't. There were not significant difference between stations. The water temperature showed typical change patterns of the temperate seawater. The annual average of salinity showed more than 31 so that there could not have occurred low saline water. The average of DO from June to August showed over than 3mg/L which showed higher than the below standard value of the hypoxic (oxygen-deficient) water. The average of Chl. a varied $1.68{\mu}g/L$ at surface, $2.38{\mu}g/L$ at bottom layer in June and $1.68{\mu}g/L$ at surface, $1.57{\mu}g/L$ at bottom layer at August. The dissolved inorganic nutrients showed high concentration in February and low concentration in August due to the limitation of the freshwater input in summer and phytoplankton used to the dissolved inorganic nutrients. The ratio of DIN/DIP showed 30.52 at surface and 37.89 at bottom layer in June which was higher than other month. The SPM was 44.15mg/L at bottom layer in February which was the highest value in this study due to the northwest monsoon. Because of the actively water change in the open sea without inflow of freshwater from land in Garolom Bay, there were not occurred low saline water and hypoxic water. thus, this Bay showed good water quality and required to be conserved continuously as important costal area for fisheries.