• Title/Summary/Keyword: 어선용 냉각기

Search Result 3, Processing Time 0.017 seconds

Performance Characteristic of Live Fishing Tank in Cooling Apparatus inshore Fishing Boat (연근해 어선용 활어조 냉각장치의 성능특성)

  • 한인근;이호생;김재돌;김흥윤;윤정민
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.52-56
    • /
    • 2001
  • A fundamental study on the cooling apparatus inshore fishing boat and its operation characteristics in sea water cooling system were performed experimentally. The circumstance is giving the blow against fisherman with incoming-decreasing and the difficulty of crew's supply and demand and management. In addition, the depression of the external situation such as the plan of EEZ(Exclusive Economic Zone) proclaim is forcing them into improving their fishing condition. By this international and domestic surrounding, the development of a cooling apparatus inshore fishing boat is demanded sincerely. We investigated load characteristics as the pilot plant operation characteristics estimation which is based on the development of cooling system and optimum cooling apparatus inshore fishing boat. These results provide useful informations which are applicable to an actual design and show the possibility of application to other fields.

  • PDF

A Study on the Framework of Decision Making on the Facility Investment of Production Automation Using CYCLONE Techniques (사이클론 기법 기반 생산자동화의 설비투자 의사결정 Framework에 관한 연구)

  • Jeong, Hyeon-ki;Lee, Dong-soo;Bae, Jeong-hoon;Shin, Sung-chul;Kim, Soo-young;Lee, Jae-chul;Jeong, Bo-yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.420-427
    • /
    • 2016
  • The marine equipment companies expanding facility investment in accordance with the booming economy are suffering from the reduced demand and the growth of chinese businesses. In this regard, the risk of overinvestment and the importance of prudent equipment investment must be reconsidered. Thus, in this study we performed a productivity and economical efficiency analysis in order to evaluate the investment value on production facilities in a company under the present conditions. The freezer of a fishing vessel manufactured by N company is selected as the subject of our study, while the assembly and welding cooling plates are configured as the scope of automation. Analysis on productivity and economical efficiency was conducted through CYCLONE (Cyclic Operation Network) simulation and economic analysis methods after analyzing the production process of freezer. The proposed analytical technique can be used to support the investment decision in production automation equipment of fishing vessels freezer.

Evaporating heat transfer characteristics of Aluminum-brass tube for seawater cooling system using R-134a (해수냉각시스템용 Aluminium Brass Tube의 R-134a 증발열전달 특성)

  • Kang, In-Ho;Seol, Sung-Hoon;Yoon, Jung-In;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.197-201
    • /
    • 2017
  • Most fishing vessels use an ice cooling system to manage and store captured fish. However, it is difficult to maintain an adequate temperature and salt concentration as well as operating time limitations in ice cooling systems. The purpose of this study is to investigate the heat transfer characteristics of flooded-type evaporators for a seawater cooling system to maintain proper seawater temperature in a fish tank. Experiments were conducted to investigate the heat transfer characteristics by changing the seawater temperature, flow rate, and saturation temperature of the refrigerant. It was confirmed that the heat transfer coefficient of an aluminum-brass tube was approximately 10% higher than that of a copper-nickel tube at the same heat flux. Furthermore, it was confirmed that applying the aluminum-brass tube to the heat transfer tube of a seawater heat exchanger was effective in terms of heat transfer. A comparison of the overall heat transfer coefficient of a single-tube heat exchanger and the flooded-type multi-tube heat exchanger for an 18-kW cooling system showed that the heat transfer coefficient of the single-tube heat exchanger was 25% higher under the same conditions. These results are considered to be important data for designing a flooded-type multi-tube heat exchanger.