• 제목/요약/키워드: 어븀 첨가됨 광섬유 증폭기

검색결과 23건 처리시간 0.022초

광전송 시스템에서의 어븀 첨가 광섬유 증폭기에 대한 분석 (Analysis of EDFA (Erbium Doped Fiber Amplifier) for Fiber Optic Transmission System)

  • 김익상;류황
    • 공학논문집
    • /
    • 제2권1호
    • /
    • pp.103-111
    • /
    • 1997
  • EDFA는 광전송시스템에서 광섬유상에 전파되는 신호가 광섬유의 손실로 인해 약해지게 되는데 미약해진 신호의 광세기를 키워주는 증폭기로서 널리 사용되고 있다. EDFA의 증폭기작을 주요 인자를 가지고 분석함으로써 그 특성을 이해하고 이를 토대로 EDFA 설계시 유용한 기준으로 삼고자 한다. 또한 광전송시스템에서의 EDFA는 자연방출광잡음으로 인해 수신단에서 신호대잡음비를 악화시켜 전송오율을 증가시키게 되는데 이를 억제하기 위한 동작조건 즉 잡음지수의 최소화하는 동작조건에 대해서 논하고자 한다.

  • PDF

피드백을 이용한 이득 고정과 평탄한 이득을 가진 EDFA (Gain-Clamping using feedback loop and Gain-Flattening in Erbium-doped Fiber Amplifiler)

  • 이형주;김용평
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2000년도 하계학술발표회
    • /
    • pp.144-145
    • /
    • 2000
  • 파장 분할 다중화(WDM)기술은 빠른 속도로 발전해 왔으며, 이에 대한 연구는 계속되고 있다. 전송용량의 증가에 의해 전송 채널의 수가 증가하고 이에 따라 이득 대역도 더 넓어져야한다.$^{(1)}$ 파장 분할 다중화(WDM) 시스템의 구성에서 어븀 첨가 광섬유 증폭기(EDFA)는 시스템의 핵심 요소로 각 단계마다 몇 개씩의 EDFA가 사용된다. EDFA에서는 이득의 변화가 10 ms정도로 천천히 일어나므로 입력의 평균값에 의해 이득이 결정된다. 따라서, EDFA는 모든 채널의 입력의 합이 일정할 때 이득의 상호 포화로 인한 채널 간의 누화가 없다는 장점이 있기 때문에 다채널 WDM 시스템의 광섬유 증폭기로 매우 유용하게 이용되고 있다.$^{(2)}$ (중략)

  • PDF

광신호처리를 위한 기능소자로서의 반도체 광증폭기

  • 정준
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 1995년도 광학 및 양자전자학 워크샵 논문집
    • /
    • pp.24-29
    • /
    • 1995
  • 반도체 광증폭기는 어븀첨가 광섬유증폭기게 비하여 높은 잡음지수, 낮은 포화출력파워, 높은 편광의존성, 주파수처핑 등의 성질을 갖기 때문에, 광신호를 증폭하기 위한 응용은 매우 제한적이다. 그러나 이득분포화 현상에 의하여 유도되는 비선형 굴절률 계수가 매우 크기 때문에, 관신호 처리를 위한 기능소자로서의 응용 가능성은 매우 높다. 본 논문에서는 시분할 역다중화기, 고속 파장변환기, 주파수 처핑 보상기 등 반도체 광증폭기의 비선형 굴절률을 이용한 여러 가지 응용분야를 소개하고 이러한 응용에 있어서 반도체 광증폭기의 장점과 한계를 논한다.

  • PDF

32 채널 파장분할다중화 광통신 전송에서 이득포화 광신호 영향 비교 (The effect comparison using saturation tone signals for optical wavelength division multiplexing communications)

  • 최보훈
    • 한국정보통신학회논문지
    • /
    • 제18권8호
    • /
    • pp.2037-2042
    • /
    • 2014
  • 32 채널 이상의 파장다중화 광신호 전송에서 이득포화 광신호 사용법이 적용되었고, 이 이득 포화 광신호의 세 가지 다른 적용 방법들이 비교되었다. 이 세 가지 방법은 고출력 DFB LD 들만을 사용하는 경우, 광증폭기로 증폭된 입력광원들을 사용하는 경우, 그리고 하나의 이득포화 광원과 소수의 파장다중화 광원들을 사용하는 경우들이다. 하나의 포화 광원을 이용한 경우는 다시 이 광원의 파장 의존성을 확인하기 위해 1532.3 nm, 1545.7 nm, 그리고 1558.2 nm의 세 가지 경우가 비교되었다. 그 결과 입력광원이 증폭기로 증폭되더라도 ASE에 의한 잡음은 영향이 미미하였음을 확인하였고, 포화 광원의 파장위치는 장파장인 경우 이득이 1 dB 이상 감소하였으며 그 원인이 분석되었다.

1.6 Tb/s (160x10 Gb/s) WDM 신호의 단일 모드 광섬유 2,000 km 전송 (1.6 Tb/s (160x10 Gb/s) WDM Transmission over 2,000 km of Single Mode Fiber)

  • 한진수;장순혁;이현재
    • 한국통신학회논문지
    • /
    • 제29권7A호
    • /
    • pp.712-718
    • /
    • 2004
  • 분산형 라만 광증폭기와 어븀 첨가 광섬유 증폭기로 구성된 복합형 광증폭기를 사용하여 1.6 Tb/s (160${\times}$10 Gb/s) 전송 용량의 WDM 광신호를 단일 모드 광섬유 2,000 km에 전송한 결과에 대하여 기술한다. 복합형 광 증폭기를 사용하여 단일 모드 광섬유 2,000 km에 전송한 뒤의 평균 광 신호대 잡음비는 C/L-band에서 각각 20.5 dB, 21.9 dB 였고, 최저 Q-factor는 C/L-band에서 각각 14.65 dB(BER=5.8E-8), 13.75 dB(BER= 5.0E-7)였다. 이 결과에 Reed-Solomon (255, 239) Forward Error Correction(FEC) 코드 기능을 사용하여 무오류 전송 결과를 얻었다.

초고속 초장거리 광전송 기술 (Optical transmission technology of Ultra high-speed and Ultra long distance)

  • 이봉영
    • 정보와 통신
    • /
    • 제11권2호
    • /
    • pp.77-89
    • /
    • 1994
  • 지난 20여년간 광섬유전송방식의 고속화는 괄목할만한 성장을 이룩했다. 최근에는 어븀첨가광섬유증폭기의 개발로 인하여 10Gb/s의 초고속 광기간통신전송방식도 실용화를 앞두고 있다. 한편, 가입자에게도 광섬유가 포설되어 화상을 주체로 한 서비스가 제공되는 향후의 B-SIDN망에서는 전송로는 물론 노드까지도 초고속의 신호전송 처리가 필수이다. 그러나, 전기적인 처리를 기반으로 한 종래의 전송 처리기술로는 속도의 한계에 도달할 가능성이 많아서 이를 대체 할 수 있는 광소자개발 및 새로운 기술구축이 요구된다. 또한, 광솔리톤은 광섬유의 분산에 의해서 광펄스폭이 널어지지 않고 안정적으로 광섬유를 전파해가는 성질을 충분히 잘 활용한 기술로써 장거리 통신기술로 적합하게 개발되었다. 이와 같은 배경으로부터 본고에서는 차세대기간통신을 위한 초고속 초장거리 광전송기술 즉, 향후에 Tb/s 전송의 주역이 될 광주파수 다중기술 및 무중계 장거리 전송이 가능한 광솔리톤기술의 연구현황을 살펴보고 기술적인 문제점 해결을 위한 향후의 연구동향을 소개한다.

  • PDF

50 GHz 채널 간격의 64 채널 광신호 전송을 위한 L-band EDFA의 구조 최적화 (Structure optimization of a L-band erbium-doped fiber amplifier for 64 optical signal channels of 50 GHz channel spacing)

  • 최보훈
    • 한국정보통신학회논문지
    • /
    • 제26권11호
    • /
    • pp.1666-1671
    • /
    • 2022
  • 채널 간격이 50 GHz 인 64 채널 파장분할 다중화 광신호를 위한 고출력 이득 평탄화된 L-band 광증폭기의 구조가 최적화되고 이 증폭기의 출력 특성이 측정되었다. 1570 nm 에서 1600 nm 사이에서 그리고 -2 dBm 입력조건 하에서, 최적화된 이단증폭기는 1 dB 오차 내에서 파장에 따른 평탄화된 이득을 가지며 이득 값은 20 dB 였다. 잡음지수는 6 dB 이내로 최소화 되었다. 추가적인 소자의 도움 없이 EDF 의 특성만을 고려하여 이득평탄화가 구현되었다. 증폭기는 2단 증폭단으로 구성되며 각 증폭단은 EDFA 구조를 기본으로 하였다. 각 단에서 EDF의 길이와 펌핑 구조들이 실험을 통해 최적화 되었다.

파장다중화 광신호의 3000km 전송을 위한 후치분산 보상 방법 비교 (Comparison of Post-dispersion Compensation Methods for Optical 40 Wavelength Division Multiplexing Channels at 3000km Transmission)

  • 최보훈
    • 한국정보통신학회논문지
    • /
    • 제17권10호
    • /
    • pp.2466-2472
    • /
    • 2013
  • 40 채널의 파장 다중화된 광신호를 3000 km 까지 전송하면서 후치분산 보상 방법의 차이에 따른 성능 변화를 조사하였다. 개별 광신호는 10 Gbps 대역폭의 RZ 신호포맷을 사용하였고 40 채널들의 파장은 1533.5 nm에서 1564.7 nm 사이에 100 GHz 의 주파수 간격을 가졌다. 후치분산 보상을 위해 40개의 개별채널 별로 후치분산을 최적화하는 경우, 전 40 채널들을 하나의 분산값으로 후치분산 보상하는 경우, 그리고 제안된 방법으로 8개씩 묶은 채널 그룹별로 최적화하는 경우의 세가지 경우가 비교되었다. 최저 성능 채널과 그 성능 값은 세가지 방식에서 차이가 없었다. 최고 성능값은 전 채널을 하나의 후치분산 값으로 사용하는 경우가 다른 두 가지 방식에 비해 성능에 떨어졌지만 그룹별 방식이나 개별 채널별 방식은 차이가 없었다. 따라서 채널 그룹별로 후치분산을 통해 신호 성능의 희생 없이 전송시스템을 단순화시킬 수 있음을 확인하였다.

파장다중화 40 채널 광신호들의 2000 km 전송에서 링크구간 분산보상 (Comparison of link span dispersion compensation for optical 40 wavelength division multiplexing channels at 2000 km transmission)

  • 최보훈
    • 한국정보통신학회논문지
    • /
    • 제17권7호
    • /
    • pp.1747-1753
    • /
    • 2013
  • 채널당 10 Gb/s 의 파장 다중화된 NRZ 광신호를 2000 km 까지 전송하면서 링크구간분산 보상 방법의 차이에 따른 성능 변화가 조사되었다. 1533.5 nm에서 1564.7 nm 사이에 100 GHz 의 주파수 간격을 가지는 40 채널의 파장 다중화 신호가 전송되었다. 링크구간 분산보상은 95%, 97.5%, 100%, 102.5% 그리고 105%가 비교되었으며 후치분산 보상이 없는 경우에는 97.5% 링크구간 분산 보상이 가장 좋은 성능을 가졌다. 총 링크거리의 누적분산 값과 링크구간당 평균분산 값의 비교를 통해 신호 성능에 미치는 분산 조건 변화의 영향을 분석하였다. 후치분산보상 최적화가 링크구간 분산보상과 함께 적용되었을 때는 102.5% 조건이 가장 좋은 결과를 보였으며 이 조건이 분산 효과와 채널간 상호 작용의 효과가 동시에 최소화되는 균형점임을 확인하였다.

40 채널 파장 다중화 광신호 3000 km 전송에서 링크 구간 거리에 따른 광신호 세기 최적화 (Power optimization of optical 40 wavelength division multiplexing channels at 3000 km transmission for link span variation)

  • 최보훈
    • 한국정보통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.197-203
    • /
    • 2013
  • 40 채널의 10 Gb/s 파장 다중화된 RZ 포맷 광신호를 3000 km 까지 전송하면서 전송 링크 구간의 거리 변화에 따른 광신호의 최적 신호 세기에 대해 연구하였다. 링크 구간의 거리를 40 km 로부터 140 km 까지 20 km 씩 변화시켰고, 각각의 링크 구간 조건에서 SSMF와 DCF에 입사되는 광신호의 세기를 변화시키면서 신호 성능인 Q 값을 측정하여 비교하였다. 링크 구간이 증가함에 따라서 SSMF에 입사되는 광세기의 최적값은 1 dB/km 의 비율로 선형적으로 증가하였고, DCF에 입사되는 광세기의 최적값은 100 km 링크 구간 거리까지는 0.5 dB/km 비율로 증가하였으나 그 이상의 구간 거리에서는 변화가 없었다. 이 같은 경향은 총전송 거리가 2000 km나 30000 km에서 동일하게 유지되었으며, 전송선에 사용된 광증폭기의 잡음지수를 5 dB에서 7 dB로 변경되어도 변화 없이 유지되었다.