• Title/Summary/Keyword: 어레이 마이크로폰

Search Result 97, Processing Time 0.026 seconds

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.490-495
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency-domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, two sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array show the most accurate determination of multiple sources' positions.

  • PDF

Study on 3D Sound Source Visualization Using Frequency Domain Beamforming Method (주파수영역 빔형성 기법을 이용한 3차원 소음원 가시화)

  • Hwang, Eun-Sue;Lee, Jae-Hyung;Rhee, Wook;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.907-914
    • /
    • 2009
  • An approach to 3D visualization of multiple sound sources has been developed with the application of a moving array technique. Frequency domain beamforming algorithm is used to generate a beam power map and the sound source is modeled as a point source. When a conventional delay and sum beamformer is used, it is considered that 2D distribution of sensors leads to have deficiency in spatial resolution along a measurement distance. The goal of moving an array in this study is to form 3D array aperture surrounding multiple sound sources so that the improved spatial resolution in a virtual space can be expected. Numerical simulation was made to examine source localization capabilities of various shapes of array. The 3D beam power maps of hemispherical and spherical distribution are found to have very sharp resolution. For experiments, several sound sources were placed in the middle of defined virtual space and arc-shaped line array was rotated around the sources. It is observed that spherical array shows the most accurate determination of multiple sources' positions.

Drone Location Tracking with Circular Microphone Array by HMM (HMM에 의한 원형 마이크로폰 어레이 적용 드론 위치 추적)

  • Jeong, HyoungChan;Lim, WonHo;Guo, Junfeng;Ahmad, Isitiaq;Chang, KyungHi
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.393-407
    • /
    • 2020
  • In order to reduce the threat by illegal unmanned aerial vehicles, a tracking system based on sound was implemented. There are three main points to the drone acoustic tracking method. First, it scans the space through variable beam formation to find a sound source and records the sound using a microphone array. Second, it classifies it into a hidden Markov model (HMM) to find out whether the sound source exists or not, and finally, the sound source is In the case of a drone, a sound source recorded and stored as a tracking reference signal based on an adaptive beam pattern is used. The simulation was performed in both the ideal condition without background noise and interference sound and the non-ideal condition with background noise and interference sound, and evaluated the tracking performance of illegal drones. The drone tracking system designed the criteria for determining the presence or absence of a drone according to the improvement of the search distance performance according to the microphone array performance and the degree of sound pattern matching, and reflected in the design of the speech reading circuit.

Construction of a Microphone Array to Localize Noise Sources of Railway Trains (철도 차량의 소음원 측정을 위한 마이크로폰 어레이 설계)

  • Choi, Sung-Hoon;Noh, Hee-Min;Cho, Jun-Ho;Koh, Hyo-In
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2269-2275
    • /
    • 2011
  • This paper deals with the design of a microphone array to measure location and spectral characteristics of railway noise sources. A microphone array estimates the direction of a noise source assumed as a point source using the delayed-sum beamforming method and its performance is determined in terms of resolution and side-lobe level. A 48 channel microphone array was already developed to measure noise sources of KTX trains and a new array with 96 microphones has been designed to enhance the performance. This paper simulates the performance the microphone arrays according to the configuration of microphones and verifies it through on-site tests.

  • PDF

The Basic Study for Development of Parametric Transmitter in the Air. (기중 파라메트릭 송파기 개발을 위한 기초 연구)

  • Moon Byung-Cheon;Kim Moo-Joon;Ha Kang-Lyeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.403-406
    • /
    • 2000
  • 파라메트릭 송파 방식을 공기중에서의 음향 변환기에 적용시키기 위한 검토로써, 비교적 공진 주파수가 낮은 기중 초음파 발생 소자를 이용하여 파라메트릭 송파기를 제작하였다. 실험에서는 송파기로서 공진주파수 38.6kHz를 갖는 음원을 제작하여 이용하였다. 비선형 왜곡으로부터 파라메트릭 어레이에 의한 차주 파수가 발생함을 알아보기 위하여 1kHz의 차주파수를 갖도록 38.1kHz와 39.1kHz의 1차파를 신호발생기로부터 인가하고 마이크로폰을 사용하여 수신하였다. 공기중에서 파라메트릭 효과의 확인을 통하여 파라메트릭 송파기에서 방사되는 1차파와 전파경로중에서 생성하는 2차파의 거동을 이론면에서 고찰하고, 실험 결과와의 비교 검토를 행하여 기중 파라메트릭 송파기 개발의 가능성을 검토하여 보았다.

  • PDF

Noise Visualization of Moving Vehicles Using Microphone Line Array (선형 마이크로폰 어레이를 이용한 이동 차량의 음장 가시화)

  • 김시문;권휴상;박순홍;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.291-297
    • /
    • 1996
  • To visualize sound field or to identify noise sources, we can use many methods such as intensity method, acoustic holographic method, source identification method using line array, etc. Conventionally all these methods are performed with the assumption of stationary condition in space and time. But for moving source, spatial characteristics and frequency components are changing, so we need another processing algorithm. This paper shows some experimental results - sound field by moving noise sources. In the experiment cross type microphone line array is used for sensing pressure and cars and a motorcycle are used as moving sources that are assumed to have constant speed. The processing methods are acoustic holographic method, spherical beamforming and spectrogram.

  • PDF

Frequency Domain Blind Source Seperation Using Cross-Correlation of Input Signals (입력신호 상호상관을 이용한 주파수 영역 블라인드 음원 분리)

  • Sung Chang Sook;Park Jang Sik;Son Kyung Sik;Park Keun-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.3
    • /
    • pp.328-335
    • /
    • 2005
  • This paper proposes a frequency domain independent component analysis (ICA) algorithm to separate the mixed speech signals using a multiple microphone array By estimating the delay timings using a input cross-correlation, even in the delayed mixture case, we propose a good initial value setting method which leads to optimal convergence. To reduce the calculation, separation process is performed at frequency domain. The results of simulations confirms the better performances of the proposed algorithm.

  • PDF

Acoustic Noise Measurement for the wind turbine blade by usig time-domain beamforming (시간영역 빔포밍을 사용한 풍력터빈 축소모델 소음원 측정)

  • Cho, Tae-Hwan;Kim, Cheol-Wan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.508-511
    • /
    • 2009
  • 풍력터빈 블레이드에서 발생하는 공력소음원의 위치 특성을 파악하기 위해 마이크로폰 어레이를 사용하여 소음원 풍동시험을 수행하였다. 풍동시험은 KARI 중형 아음속풍동에서 수행되었으며, 소음원의 위치파악을 위해 시간영역 회전체 빔포밍기법을 사용하였다. 기존 시간영역 회전체 빔포밍 기법의 경우 시험데이터 해석에 많은 시간이 소요되나, 본 논문에서는 원통형 좌표계에서 회전각 격자간격과 해석기간 간격 사이의 상관조건을 도입하여 데이터 해석시간을 기존 방법 대비 1/5로 단축하였다. 시험결과 나타난 주파수에 따른 블레이드 공력소음원의 위치 특성은 2kHz 이하 대역에서는 블레이드 반경 80% 부근에 주소음원이 위치하며, 4kHz 이상 대역에서는 블레이드 끝단 부근에 주 소음원이 위치하고 있다.

  • PDF

Experiments for the Acoustic Source Localization in 2D Cavity Flow (2차원 공동 유동에서의 소음원 위치 판별을 위한 실험적 연구)

  • Lee, Jaehyung;Park, Kyu-Chol;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1241-1248
    • /
    • 2004
  • This paper presents an acoustic source localization technique on 2D cavity model in flow using a phased microphone array. Investigation was performed on cavity flows of open and closed types. The source distributions on 2D cavity flow were investigated in an anechoic open-jet wind tunnel. The array of microphones was placed outside the flow to measure the far field acoustic signals. The optimum sensor placement was decided by varying the relative location of the microphones to improve the spatial resolution. Pressure transducers were flush-mounted on the cavity surface to measure the near-filed pressures. It is shown that the propagated far field acoustic pressures are closely correlated to the near-field pressures and their spectral contents are affected by the cavity parameter L/D.

Sound Source Tracking Control of a Mobile Robot Using a Microphone Array (마이크로폰 어레이를 이용한 이동 로봇의 음원 추적 제어)

  • Han, Jong-Ho;Han, Sun-Sin;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.343-352
    • /
    • 2012
  • To follow a sound source by a mobile robot, the relative position and orientation of the sound source from the mobile robot have been estimated using a microphone array. In this research, the difference among the traveling times of the sound source to each of three microphones has been used to calculate the distance and orientation of the sound source from the mobile robot which carries the microphone array. The cross-correlation between two signals has been applied for detecting the time difference between two signals, which provides reliable and precise value of the time difference comparing to the conventional methods. To generate the tracking direction to the sound source, fuzzy rules are applied and the results are used to control the mobile robot in a real-time. The efficiency of the proposed algorithm has been demonstrated through the real experiments comparing to the conventional approaches.