• Title/Summary/Keyword: 어랑분포

Search Result 11, Processing Time 0.022 seconds

An Approach for the NHPP Software Reliability Model Using Erlang Distribution (어랑 분포를 이용한 NHPP 소프트웨어 신뢰성장 모형에 관한 연구)

  • Kim Hee-Cheul;Choi Yue-Soon;Park Jong-Goo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • The finite failure NHPP models proposed in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, we propose the Erlang reliability model, which can capture the increasing nature of the failure occurrence rate per fault. Equations to estimate the parameters of the Erlang finite failure NHPP model based on failure data collected in the form of inter-failure times are developed. For the sake of proposing shape parameter of the Erlang distribution, we used to the goodness-of-fit test of distribution. Data set, where the underlying failure process could not be adequately described by the existing models, which motivated the development of the Erlang model. Analysis of the failure data set which led us to the Erlang model, using arithmetic and Laplace trend tests, goodness-of-fit test, bias tests is presented.

The Comparative Software Development Cost Model Considering the Change in the Shape Parameter of the Erlang Distribution (어랑분포의 형상모수 변화에 따른 소프트웨어 개발 비용모형에 관한 비교 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.566-572
    • /
    • 2016
  • Software Reliability implemented in software development is one of the most important issues. In finite failure NHPP software reliability models for software failure analysis, the hazard function that means a failure rate may have constant independently for failure time, non-increasing or non-decreasing pattern. In this study, software development cost analysis considering the variable shape parameter of Erlang distribution as the failure life distribution in the software product testing process was studied. The software failure model was applied finite failure Non-Homogeneous Poisson Procedure and the parameters approximation using maximum likelihood estimation was accompanied. Thus, this paper was presented comparative analysis by applying a software failure time data to the software, considering the shape parameter of Erlang distribution for development cost model analysis. When compared to the cost curve in accordance with the shape parameter, the model of smaller shape can be seen that the optimal software release time delay and more cost. Through this study, it is thought that it can serve as a preliminary information which can basically help the software developers to search for development cost according to software shape parameters.

The Comparative Software Reliability Cost Model of Considering Shape Parameter (형상모수를 고려한 소프트웨어 신뢰성 비용 모형에 관한 비교 연구)

  • Kim, Kyung-Soo;Kim, Hee-Cheul
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.219-226
    • /
    • 2014
  • In this study, reliability software cost model considering shape parameter based on life distribution from the process of software product testing was studied. The shape parameter using the Erlang and Log-logistic model that is widely used in the field of reliability problems presented. The software failure model was used finite failure non-homogeneous Poisson process model, the parameters estimation using maximum likelihood estimation was conducted. In comparison result of software cost model based on the Erlang distribution and the log-logistic distribution software cost model, because Erlang model is to predict the optimal release time can be software, but the log-logistic model to predict to optimal release time can not be, Erlang distribution than the log-logistic distribution appears to be effective. In this research, software developers to identify software development cost some extent be able to help is considered.

A Comparative Study on Reliability Attributes for Software Reliability Model Dependent on Lindley and Erlang Life Distribution (랜들리 및 어랑 수명분포에 의존한 소프트웨어 신뢰성 모형에 대한 신뢰도 속성 비교 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.469-475
    • /
    • 2017
  • Software reliability is one of the most basic and essential problems in software development. In order to detect the software failure phenomenon, the intensity function, which is the instantaneous failure rate in the non-homogeneous Poisson process, can have the property that it is constant, non-increasing or non-decreasing independently at the failure time. In this study, was compared the reliability performance of the software reliability model using the Landely lifetime distribution with the intensity function decreasing pattern and Erlang lifetime distribution from increasing to decreasing pattern in the software product testing process. In order to identify the software failure phenomenon, the parametric estimation was applied to the maximum likelihood estimation method. Therefore, in this paper, was compared and evaluated software reliability using software failure interval time data. As a result, the reliability of the Landely model is higher than that of the Erlang distribution model. But, in the Erlang distribution model, the higher the shape parameter, the higher the reliability. Through this study, the software design department will be able to help the software design by applying various life distribution and shape parameters, and providing software reliability attributes data and basic knowledge to software reliability model using software failure analysis.

Evaluation on the Reliability Attributes of Finite Failure NHPP Software Reliability Model Based on Pareto and Erlang Lifetime Distribution (파레토 및 어랑 수명분포에 근거한 유한고장 NHPP 소프트웨어 신뢰성모형의 신뢰도 속성에 관한 평가)

  • Min, Kyung-il
    • Journal of Industrial Convergence
    • /
    • v.18 no.3
    • /
    • pp.19-25
    • /
    • 2020
  • In the software development process, software reliability evaluation is a very important issue. In particular, finding the optimal development model that satisfies high reliability is the more important task for software developers. For this, in this study, Pareto and Erlang life distributions were applied to the finite failure NHPP model to evaluate the reliability attributes. For this purpose, parametric estimation is applied to the maximum likelihood estimation method, and nonlinear equations are calculated using the bisection method. As a result, the Erlang model showed better performance than the Pareto model in the evaluation of the strength function and the mean value function. Also, as a result of inputting future mission time and evaluating reliability, the Erlang model showed an effectively high trend together with the Pareto model, while the Goel-Okumoto basic model showed a decreasing trend. In conclusion, the Erlang model is the best model among the proposed models. Through this study, it is expected that software developers will be able to use it as a basic guideline for exploring and evaluating the optimal software reliability model.

Infinite Failure NHPP Software Mixture Reliability Growth Model Base on Record Value Statistics (기록값 통계량에 기초한 무한고장 NHPP 소프트웨어 혼합 신뢰성장 모형에 관한 연구)

  • Kim, Hee-Cheul;Shin, Hyun-Cheul;Kim, Kyung-Soo
    • Convergence Security Journal
    • /
    • v.7 no.3
    • /
    • pp.51-60
    • /
    • 2007
  • Infinite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, exponential distribution and Rayleigh distribution model was reviewed, proposes the mixture reliability model, which made out efficiency substituted for situation for failure time Algorithm to estimate the parameters used to maximum likelihood estimator and bisection method, model selection based on SSE and Kolmogorov distance, for the sake of efficient model, was employed. Analysis of failure using S27 data set for the sake of proposing shape parameter of the mixture distribution was employed. This analysis of failure data compared with the mixture distribution model and the existing model(using arithmetic and Laplace trend tests, bias tests) is presented.

  • PDF

A Performance Comparative Evaluation for Finite and Infinite Failure Software Reliability Model using the Erlang Distribution (어랑분포를 적용한 유한 및 무한 고장 소프트웨어 신뢰모형에 관한 성능 비교 평가에 관한 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.351-358
    • /
    • 2016
  • Science and technology is developing rapidly as more powerful software with the rapid development of software testing and reliability assessment by the difficulty increases with the complexity of the software features of the larger increases NHPP software reliability models for failure analysis can have, in the literature, exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, finite failure NHPP models that assuming the expected value of the defect and infinite failures NHPP models that repairing software failure point in time reflects the situation, were presented for comparing property. Commonly used in the field of software reliability based on Erlang distribution software reliability model finite failures and infinite failures were presented for performance comparative evaluation problem. As a result, finite failure model is better than infinite failure model effectively. The parameters estimation using maximum likelihood estimation in the course of this study was conducted. As the results of this research, software developers to identify software failure property be able to help is concluded.

NHPP Software Reliability Model based on Generalized Gamma Distribution (일반화 감마 분포를 이용한 NHPP 소프트웨어 신뢰도 모형에 관한 연구)

  • Kim, Hee-Cheul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.6 s.38
    • /
    • pp.27-36
    • /
    • 2005
  • Finite failure NHPP models presented in the literature exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates Per fault. This Paper Proposes reliability model using the generalized gamma distribution, which can capture the monotonic increasing(or monotonic decreasing) nature of the failure occurrence rate per fault. Equations to estimate the parameters of the generalized gamma finite failure NHPP model based on failure data collected in the form of interfailure times are developed. For the sake of proposing shape parameter of the generalized gamma distribution, used to the special pattern. Data set, where the underlying failure process could not be adequately described by the knowing models, which motivated the development of the gamma or Weibull model. Analysis of failure data set for the generalized gamma modell, using arithmetic and Laplace trend tests . goodness-of-fit test, bias tests is presented.

  • PDF

A Study on the Property Analysis of Software Reliability Model with Shape Parameter Change of Finite Fault NHPP Erlang Distribution (유한고장 NHPP 어랑분포의 형상모수 변화에 따른 소프트웨어 신뢰성 모형의 속성 분석에 관한 연구)

  • Min, Kyung Il
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.4
    • /
    • pp.115-122
    • /
    • 2018
  • Software reliability has the greatest impact on computer system reliability and software quality. For this software reliability analysis, In this study, we compare and analyze the trends of the properties affecting the reliability according to the shape parameters of Erlang distribution based on the finite fault NHPP. Software failure time data were used to analyze software failure phenomena, the maximum likelihood estimation method was used for parameter estimation. As a result, it can be seen that the intensity function is effective because it shows a tendency to decrease with time when the shape parameters a = 1 and a = 3. However, the pattern of the mean value function showed an underestimation pattern for the true values when the shape parameters a = 1 and a = 2, but it was found to be more efficient when a = 3 because the error width from the true value was small. Also, in the reliability evaluation of the future mission time, the stable and high trend was shown when the shape parameters a = 1 and a = 3, but on the contrary, when a = 2, the reliability decreased with the failure time. Through this study, the property of finite fault NHPP Erlang model according to the change of shape parameter without existing research case was newly analyzed, and new research information that software developers can use as basic guideline was presented.

The Study of Software Optimal Release Using Sensitivity Analysis (민감도 분석을 이용한 소프트웨어 최적방출시기에 관한 연구)

  • Shin, Hyun-Cheul
    • Convergence Security Journal
    • /
    • v.8 no.4
    • /
    • pp.121-126
    • /
    • 2008
  • It is of great practical interest to decide when to stop testing a software system in development phase and transfer it to the user. This decision problem called an optimal release policies. In this paper discussed to specify an optimal release policies. In this paper, propose an optimal release policies of the life distribution applied Erlang distribution of special pattern of Gamma distribution. In this paper, discuss optimal software release policies which minimize a total average software cost of development and maintenance under the constraint of satisfying a software reliability requirement. From Sensitivity Analysis, make out estimating software optimal release time.

  • PDF