• 제목/요약/키워드: 어노이언스

검색결과 8건 처리시간 0.026초

중량충격음 어노이언스 반응에 대한 IACC 변화의 영향 (Effects of IACC and its Variation on Annoyance of Heavy-weight Floor Impact Sounds)

  • 센딜 쿠마르;사토신이치;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.626-630
    • /
    • 2006
  • This study investigates the effects of Interaural Cross-correlation(IACC) and its variation on annoyance of the heavy-weight impact sounds. Subjects evaluated the annoyance of the heavy-weight floor impact sounds recorded in rooms of apartments which have different sound insulation treatments; furnished and occupied conditions are characterized by the ACF/IACF factors. A paired comparison test was conducted using the impact sound sources whose IACC and variation of IACC values were different. It was found that IACC is inversely correlated with the scale value(r=-0.62) whereas the variation of IACC is not(r=-0.34). On the contrary, ${\Phi}(0)$ is highly correlated with scale value of annoyance and ${\Phi}(0)$ is need to be controlled as constant to find the effect of IACC on annoyance.

  • PDF

인체 진동 소음의 인체 영향에 대한 국외 기술 조사: 인체 소음 (investigation on Human Effects of Vibration and Noise Exposed on Human: II. Human Noise)

  • 권휴상;정완섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.687-690
    • /
    • 2001
  • 환경문제로써 소음에 대한 민원이 증가하고 관심이 커지면서 소음에 의한 인체의 영향 연구의 필요성이 제기되고 있다. 이에 대한 국내의 연구가 미미하고 산업보건의 관점에서 다루어져 왔기 때문에 먼저 국외 기술조사를 바탕으로 연구의 동향을 파악한다. 환경요인으로써 인체 영향 소음을 정의하는 인자로 어노이언스(annoyance)가 많이 사용되고 있으며 소음레벨과 관련하여 다양한 정량화 모델이 제시되고 있다. 소음이 의한 인체의 손상에 대해서는 많은 가능성과 연관성이 제시되고 있지만 그 발생 메커니즘은 아직 구체적으로 밝혀지지는 않았다. 보고서들01 의하면 장기간의 소음 노출에 의해서 다양한 건강 손꼴이 나타나며 안락감의 파괴로부터 시작하여 만성적인 질환으로 발전한다고 추정한다.

  • PDF

층간소음 어노이언스에 대한 설문조사 (Questionnaire Survey on Annoyance of Floor Impact Sound)

  • 정정호;이평직;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.262-265
    • /
    • 2006
  • In order to investigate characteristics of floor impact sound generated in the apartment buildings, questionnaire survey was conducted for respondents living in apartments in 200t. Questions in the surrey were on the characteristics of real impact sounds, subjective annoyance and satisfaction on the heavy and light impact sources. From the survey results, it was found that most annoying time of a day and the space were 8 p.m. to midnight at living room. It was also revealed that the main source of the floor impact sound from the upper floor is a child's jumping and running at from six to nine. More than half of people were not satisfied on the floor impact isolation performance of their own apartments. The percentage of residents who were annoyed by the heavy-weight impact sound such as children's jumping and adult's walking was $5{\sim}10%$ lower than by light-weight impact sound. In addition, females being responded more annoyed by floor impact sound than males.

  • PDF

예측소음도를 이용한 어노이언스 예측모델을 위한 로지스틱 회귀분석의 적용방법 (Application Method of Logistic Regression Analysis for Annoyance Prediction Model Based on Predicted Noise Level)

  • 손진희;이건;정태량;장서일
    • 한국소음진동공학회논문집
    • /
    • 제20권6호
    • /
    • pp.555-561
    • /
    • 2010
  • Predicted noise level has been used to assess the annoyance response since noise map was generalized and being the normal method to assess the environmental noise. Unfortunately using predicted noise level to derive the annoyance prediction curve caused some problems. The data have to be grouped manually to use the annoyance prediction curve. The aim of this paper is to propose the method to handle the predicted noise level and the survey data for annoyance prediction curve. This paper used the percentage of persons annoyed(%A) and the percentage of persons highly annoyed as the descriptor of noise annoyance in a population. The logistic regression method was used for deriving annoyance prediction curve. It is concluded that the method of dichotomizing data and logistic regression was suitable to handle the predicted noise level and survey data.

PMV와 음환경의 복합 작용이 실내 환경 지각에 미치는 영향 (Combined Effects of PMV and Acoustics on Indoor Environmental Perception)

  • 양원영
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.135-142
    • /
    • 2016
  • Purpose: The purposes of this paper are to investigate effects of indoor thermal environment on acoustical perception and effects of acoustics on indoor thermal perception, and to understand basic human perception on indoor environment. Method: Subjective assessment was performed in an indoor environmental chamber with 24 university students. Thermal conditions with PMV -1.53, 0.03, 1.53, 1.83 were simulated with a VRF system, a humidifier, a dehumidifier, and a ventilation system. Six noise sources - Cafe, Fan, Traffic, Birds, Music, Water- with sound levels of 45, 50, 55, 60 dBA were played for 2 minutes in random order. Temperature sensation, temperature preference, humidity sensation, humidity preference, noisiness, loudness, annoyance, and acoustic preference were assessed using bipolar visual analogue scales. The ANOVA and Turkey's post hoc test were used for data analysis. Result: Thermal environmental perceptions were not altered through 2 minutes noise exposure. Acoustical perceptions were altered by thermal conditions. The results were consistent with previous papers, however, the noise exposure time should be carefully considered for further development.

소음이 실내 온열감과 온열쾌적감에 미치는 영향 (Effects of Noise on Indoor Thermal Sensation and Comfort)

  • 양원영
    • KIEAE Journal
    • /
    • 제17권1호
    • /
    • pp.83-89
    • /
    • 2017
  • Purpose: Thermal sensation or thermal comfort was randomly used in many studies which focused on combined effects of thermal and acoustic environments on human perception. However, thermal sensation and thermal comfort are not synonyms. Thermal comfort is more complex human perception on thermal environment than thermal sensation. This study aims to investigate effects of noise on thermal sensation and thermal comfort separately, and also to investigate effects of temperature on acoustic sensation and comfort. Method: Combined thermal and acoustic configurations were simulated in an indoor environmental chamber. Twenty four participants were exposed to two types of noise (fan and babble) with two noise levels (45 dBA and 60 dBA) for an hour in each thermal condition of PMV-1.53, 0.03, 1.53, 1.83, respectively. Temperature sensation, temperature preference, thermal comfort, noisiness, loudness, annoyance, acoustic comfort, indoor environmental comfort were evaluated in each combined environmental condition. Result: Noise did not affected thermal sensation, but thermal comfort significantly. Temperature had an effect on acoustic comfort significantly, but no effect on noisiness and loudness in overall data analysis. More explicit interactions between thermal condition and noise perception showed only with the noise level of 60 dBA. Impacts of both thermal comfort and acoustic comfort on the indoor environmental comfort were analyzed. In adverse thermal environments, thermal comfort had more impact than acoustic comfort on indoor environmental comfort, and in neutral thermal environments, acoustic comfort had more important than thermal comfort.