• Title/Summary/Keyword: 양자 유전 알고리즘

Search Result 12, Processing Time 0.019 seconds

A study on production and distribution planning problems using hybrid genetic algorithm (유전 알고리즘을 이용한 생산 및 분배 계획)

  • 정성원;장양자;박진우
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.4
    • /
    • pp.133-141
    • /
    • 2001
  • Rapid development in computer and network technology these days has created in environment in which decisions for manufacturing companies can be made in a much broader perspective. Especially, better decisions on production and distribution planning(PDP) problems can be made laking advantage of real time information from all the parties concerned. However, since the PDP problem-a core part of the supply chain management- is known to be the so-called NP-hard problem, so heuristic methods are dominantly used to find out solutions in a reasonable time. As one of those heuristic techniques, many previous studios considered genetic a1gorithms. A standard genetic a1gorithm applies rules of reproduction, gene crossover, and mutation to the pseudo-organisms so the organisms can pass along beneficial and survival-enhancing trails to a new generation. When it comes to representing a chromosome on the problem, it is hard to guarantee an evolution of solutions through classic a1gorithm operations alone, for there exists a strong epitasis among genes. To resolve this problem, we propose a hybrid genetic a1gorithm based on Silver-Meal heuristic. Using IMS-TB(Intelligent Manufacturing System Test-bed) problem sets. the good performance of the proposed a1gorithm is demonstrated.

  • PDF

An optimal codebook design for multistage gain-shape vector quantizer using genetic algorithms (유전알고리즘에 의한 다단 gain-shape 양자화기의 최적 코드북 설계)

  • 김대진;안선하
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.80-93
    • /
    • 1997
  • This paper proposes a new technique of optimal codebook design in multistage gain-shape vector quantization (MS-GS VQ) for wireless image communication. An original image is divided into a smany blocks as possible in order to get strong robustness to channel transmission errors: the original image is decomposed into a number of subband images, each of which contains a sperate spatial frequency information and is obtained by the biorthogonal wavlet transform; each subband is separated into several consecutive VQ stages, where each stage has a residual information of the previous stage; one vector in each stage is divided into two components-gain and shape. But, this decomposition genrates too many blocks and it thus makes the determination of optimal codebooks difficult. We overcome this difficulty by evolving each block's codebook independently with different genetic algorithm that uses each stage's individual training vectors. Th eimpact of th eproposed VQ technique on the channel transmission errors is compared with that of other VQ techniques. Simulation results show that the proposed VQ technique (MS-GS VQ) with the optimal codebook designe dy genetic algorithms is very robust to channel transmission errors even under the bursty and high BER conditions.

  • PDF